Исчезающая ложка. Тайны периодической таблицы Менделеева - Сэм Кин - E-Book

Исчезающая ложка. Тайны периодической таблицы Менделеева E-Book

Сэм Кин

0,0
6,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Таблица Менделеева — удивительно сложное человеческое достижение, одно из величайших изобретений науки. Если рассматривать таблицу на более сложном уровне, то можно увидеть, что в ней закодирована информация о происхождении каждого атома, о том, во что атом может превращаться, на какие элементы распадаться.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
MOBI

Seitenzahl: 557

Veröffentlichungsjahr: 2025

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Сэм Кин Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева

Sam Kean

The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements

Copyright © 2010 by Sam Kean. This edition published by arrangement with Little, Brown and Company, New York, New York, USA. All rights reserved.

© Оформление. ООО «Издательство «Эксмо», 2015

Введение

В детстве (было это в начале 80-х) я любил болтать с полным ртом – там могла быть еда, инструменты дантиста, пузырьки, что угодно. Даже если никого рядом не было, я все равно так разговаривал. С этого увлечения и начался мой интерес к периодической системе элементов. Мне часто доводилось лежать в одиночестве с градусником под языком. Во втором и третьем классе я болел ангиной не меньше десяти раз, от нее целыми днями было больно глотать. Меня совершенно не смущало подолгу оставаться дома, где я мог лечиться ванильным мороженым и шоколадной подливкой. Кроме того, во время постельного режима у меня всегда был лишний шанс разбить старенький ртутный градусник.

Бывало, я лежал со стеклянной палочкой под языком и вдруг громко отвечал на воображаемый вопрос. Градусник выскальзывал у меня изо рта и разбивался о деревянный пол, капельки ртути начинали кататься по доскам, как шарики из крошечных подшипников. В мгновение ока прибегала мама и, несмотря на свой артрит, быстро нагибалась и начинала сгонять шарики в кучу, как барашков. Она ловко орудовала зубочисткой как маленькой клюшкой, собирая капельки так близко, что они почти касались друг друга. Вдруг, после очередного толчка одна капелька поглощала другую. Получался один ровный шарик, подрагивавший там, где только что было два. Мама повторяла этот фокус снова и снова, по всему полу, пока вся жидкость не сливалась в одну серебристую лужицу.

После того как вся ртуть была собрана, мама брала пустой пластмассовый пузырек из-под таблеток (этот пузырек с зеленой этикеткой всегда стоял у нас на кухне, на полке для безделушек, между голубой керамической кружкой – памятью о семейной встрече в 1985 году – и плюшевым мишкой с удочкой). Мама загоняла шарик на конверт, а потом до капли доливала содержимое последнего погибшего градусника к уже покоившейся в сосуде ртути – блестящий шарик в бутылочке уже достиг размеров ореха-пекана.

Иногда, прежде чем поставить пузырек на место, мама наливала ртуть в колпачок и давала нам с братьями полюбоваться, как в нем катается волшебный металл, так легко рассыпающийся и сливающийся воедино. Я искренне сочувствовал тем детям, чьи матери настолько боялись ртути, что даже не давали им есть тунца[1]. Средневековые алхимики, несмотря на свою жажду золота, считали ртуть самым могучим и романтическим веществом во Вселенной. В детстве я совершенно их понимал. Я даже готов был вслед за ними поверить, что ртуть не вписывается в прозаические природные категории – она одновременно является твердым телом и жидкостью, металлом и водой, частичкой рая и ада; что в ней живут потусторонние духи.

Позже я узнал, что ртуть имеет такие свойства именно потому, что является химическим элементом. В отличие от воды (Н2O) или углекислого газа (СO2) и абсолютного большинства тех веществ, с которыми нам приходится сталкиваться в жизни, ртуть нельзя разложить на более простые составляющие. На самом деле, ртуть – один из самых высокомерных элементов. Ее атомы предпочитают дружить только с другими атомами ртути, сводя к минимуму контакты с окружающим миром. Поэтому ртуть и собирается в шарики. Большинство жидкостей, которые мне доводилось разливать в детстве, вели себя иначе. Вода разливалась повсюду, ровно то же происходило с растительным маслом, уксусом и растаявшим желе. Ртуть никогда не оставляла пятен. Родители всегда заставляли меня носить тапки после того, как случалось разбить градусник, чтобы мельчайшие осколки стекла не вонзились мне в ноги. Но не помню, чтобы меня пугали разлитой ртутью.

Долгое время я интересовался восьмидесятым элементом в школе, искал о нем упоминания в книгах, как другие следят, не упоминают ли их знакомого в газетах. Я вырос на Великих Равнинах. На уроках истории нам рассказывали, как Льюис и Кларк[2] прошли через Южную Дакоту и остальную территорию Французской Луизианы, захватив с собой микроскоп, компасы, секстанты, три ртутных термометра и другие инструменты. Но тогда я не знал, что они взяли с собой еще и шестьсот ртутных слабительных пилюль, каждая вчетверо больше всем знакомой таблетки аспирина. Это лекарство называлось «Желчные пилюли доктор Раша» – по имени Бенджамина Раша, одного из участников подписания Декларации независимости США и врача-героя, отважно работавшего в Филадельфии во время эпидемии желтой лихорадки, разразившейся в 1793 году. Его любимым лекарством от всех болезней была кашица из хлорида ртути, принимаемая перорально. Несмотря на тот прогресс, который произошел в медицине в период с 1400 по 1800 год, врачи в ту эпоху оставались скорее знахарями, чем медиками. Руководствуясь своеобразной симпатической магией (магией подобия), лекари предполагали, что прекрасная и заманчивая ртуть может исцелять страждущих, проводя их через жестокий кризис – яд

уничтожает яд. Доктор Раш потчевал пациентов своим раствором, пока они не начинали исходить слюной, через недели и месяцы такого лечения у людей часто выпадали волосы и зубы. Несомненно, снадобье мистера Раша травило или просто убивало тех, кого пощадила желтая лихорадка. Тем не менее, поднаторев в таком лечении в Филадельфии, Раш снабдил этим лекарством Льюиса и Кларка. Ртутные пилюли обладали побочным слабительным эффектом, благодаря которому современные археологи могут с легкостью находить те места, где разбивали лагеря эти первопроходцы. Учитывая, какой дрянной пищей и грязной водой им приходилось довольствоваться в пути, все участники отряда то и дело имели проблемы с желудком. Во многих местах на пути экспедиции образовались небольшие скопления ртути – вероятно, как раз там, где исследователи устраивали отхожие места. Пожалуй, иногда лекарство доктора Раша срабатывало слишком уж хорошо.

Ртуть оказалась и в кабинете естествознания. Когда я впервые увидел кавардак элементов в периодической таблице, я не нашел там ртуть. Но она там есть – между плотным и мягким золотом и таллием, который, кстати, тоже ядовит. Символ ртути – Hg – состоит из двух букв, которых, казалось бы, и близко нет в ее названии. Все дело в том, что эти буквы – из латинского названия, hydrargyrum, которое переводится как «вода-серебро». Этот факт помог мне понять, как очень древние языки и мифология повлияли на формирование периодической системы. Некоторые следы мифологии вы можете заметить и в названиях самых новых, сверхтяжелых элементов, расположенных в нижнем ряду таблицы.

Для ртути нашлось место и в кабинете литературы. Когда-то шляпники использовали ярко-оранжевый ртутный раствор для отделения меха от шкуры. И эти мастера, вынужденные вдыхать пары ртути, постепенно начинали походить на Безумного Шляпника из «Алисы в Стране чудес» – теряя и волосы, и разум. Наконец, я осознал, насколько ядовита ртуть; наверное, именно из-за ее токсичности пилюли доктора Раша прочищали кишки так хорошо. Ведь организм пытается избавиться от любых ядов, в том числе, от ртути. Но как ни вредно глотать ртуть, ее пары еще токсичнее. Они истрепывают «проводки» нашей центральной нервной системы и прожигают дыры в мозгу, подобно прогрессирующей болезни Альцгеймера.

Но чем яснее я представлял себе опасность ртути, тем сильнее привлекала меня ее разрушительная красота. Помните «Тигра светло горящего»[3] Уильяма Блейка? Шли годы, родители обновили кухню и убрали полку с кружкой и медвежонком, но сложили все эти безделушки в картонную коробку. В один из последних визитов домой я докопался до бутылочки из-под таблеток и открыл ее. Покачивая пузырек, я ощущал, как в нем перекатывается тяжелая жидкость. Заглянув через край, я не мог оторвать глаз от маленьких капель, расплескавшихся по стенкам. Они просто лежали там, искрясь, как совершенные водяные шарики, которые можно встретить только в фантазиях. Все детство разлитая ртуть стойко ассоциировалась у меня с жаром. Но на этот раз, представляя, что кроется за ужасной симметрией этих крошечных сфер, я ощутил озноб.

* * *

Интересуясь этим элементом, я познакомился с его историей, этимологией, ролью в алхимии, литературе, криминалистике и психологии. Но я собрал и много других историй о химических элементах – особенно хорошо эта коллекция пополнялась в годы обучения в колледже. Там я занимался исследованиями, а также познакомился с несколькими любезными профессорами, которые охотно отвлекались от работы, чтобы немного поболтать о науке.

В колледже я выбрал физику в качестве профильного предмета, но постоянно мечтал поскорее вырваться из лаборатории и вновь взяться за перо. Я чувствовал себя жалким среди одноклассников, одаренных молодых ученых, которые обожали метод проб и ошибок – мне же это было не дано. Я застрял в Миннесоте на пять унылых лет и получил диплом с отличием по физике. Но, несмотря на то что я провел в лаборатории сотни часов, зазубрил тысячи уравнений, начертил десятки тысяч схем с блоками и наклонными съездами без учета трения, истинное образование я приобрел в беседах с профессорами. Они рассказали мне о Ганди, и о Годзилле, и об ученом-евгенике, который попытался украсть Нобелевскую премию при помощи германия. О том, как куски металлического натрия бросают в реку, где они взрываются и глушат рыбу. О людях, блаженно задыхающихся азотом в космических шаттлах. О бывшем профессоре из нашего кампуса, который экспериментировал с кардиостимулятором, питающимся от плутония, вставленным в его собственную грудь. Профессор ускорял и замедлял аппарат, манипулируя огромными электромагнитными катушками.

Я накрепко запомнил все эти истории. А недавно, вспомнив о ртути за завтраком, я осознал, что почти со всеми элементами из периодической системы связана какая-нибудь смешная, или странная, или страшная история. В то же время таблица Менделеева – одно из величайших интеллектуальных достижений человеческого рода. Это одновременно и научный шедевр, и сборник рассказов. Я написал эту книгу, чтобы тщательно отобразить все ее слои – как рисунки на кальке в учебнике по анатомии. Все эти рисунки рассказывают одну и ту же историю, но делают ее «срезы» на разной глубине. В простейшем смысле периодическая система – это каталог всех элементов, встречающихся в нашей Вселенной. В таблице сто с небольшим символов, обладающих яркими индивидуальностями. Из этих элементов состоит все, что мы видим и что нас окружает. Таблица построена так, что ученый-химик легко улавливает взаимосвязи между

различными элементами, может объединить их в семейства. Если рассмотреть таблицу на более сложном уровне, то можно увидеть, что в ней закодирована информация о происхождении каждого атома, а также о том, в какие атомы он может превращаться, на какие элементы распадаться. Эти атомы естественным образом объединяются в динамические системы, включая живые существа. Периодическая система позволяет прогнозировать, какие связи будет образовывать тот или иной атом. В таблице даже угадываются «коридоры» гнусных элементов, наносящих вред живым существам. Порой эти элементы бывают и смертельно ядовиты.

Наконец, периодическая система – это удивительное человеческое достижение, артефакт, отражающий чудесные, коварные и порочные грани человеческого существа. Таблица позволяет понять, как мы взаимодействуем с окружающим миром. История нашего вида записана в виде компактного и красивого либретто. Все эти уровни заслуживают специального изучения, от простого к сложному. Сюжеты из периодической таблицы не только станут для вас увлекательным чтением, но и помогут понять такие вещи, о которых никогда не пишут в учебниках и лабораторных пособиях. Мы едим химические элементы и дышим ими; люди ставят на них и проигрывают огромные суммы; философы обращаются к элементам, задумываясь о значении науки. Элементы отравляют людей и порождают войны. Между водородом в левом верхнем углу и искусственно синтезированными эфемерными веществами, занимающими нижние ряды, вы найдете пузыри, бомбы, деньги, алхимию, политические игры, историю, яды, преступления и любовь. А также немного науки.

Здесь и далее концевыми сносками обозначены примечания автора, в которых он подчеркивает некоторые интересные моменты.

2. Почти близнецы и паршивая овца: генеалогия элементов

Как-то раз Шекспир решил выдумать самое длинное слово в английском языке. Он предложил слово «Honorificabilitudinitatibus» (хонорификабилитудинитатибус), которое может либо означать «преисполненный всяческих почестей», либо читаться как анаграмма, подсказывающая, что пьесы Шекспира написал не сам Бард, а Френсис Бэкон[13]. Но в этом слове всего двадцать семь букв, и ему далеко до самого длинного английского слова.

Разумеется, попытка найти самое длинное слово напоминает попытку удержаться на ногах под ударом волн. Вы быстро запутаетесь, ведь язык непрерывно развивается и постоянно меняет направление. Более того, язык значительно отличается в разных контекстах. Слово Шекспира, произнесенное шутом в комедии «Бесплодные усилия любви», очевидно, происходит из латыни. Но мы, пожалуй, не должны учитывать такие заимствованные слова, даже если они употребляются в английских фразах. Кроме того, если учитывать слова, которые просто обрастают множеством приставок и суффиксов (например, «antidisestablishmentarianism», 28 букв, на русский язык переводится как «сопротивление отделению церкви от государства») или явную абракадабру («supercalifragilisticexpialidocious», 34 буквы)[14], то писатель сможет водить читателей за нос еще довольно долго, пока у него не онемеют руки.

Но если искать осмысленное слово, то самым длинным будет считаться слово, которое было изобретено не с целью поставить рекорд по длине лексической единицы, а появилось в 1964 году в реферативном журнале Chemical Abstracts, который служит для химиков своеобразным справочником. Это слово обозначает важнейший белок, который считается первым из открытых вирусов. Этот белок вируса табачной мозаики был открыт в 1892 году и называется – набрали в грудь воздуха: ацетилсерилтиросилсерилизолейцилтреонилсерилпролилсерилглютаминилфенилаланилвалифенилаланиллейцилсерилсеривалитриптофилаланиласпартилпролилизолейцилглютамиллейциллейциласпарагинилвалилцистейнилтреонилсерилсериллейцилглициласпарагинилглютаминилфенилаланилглютаминилтреонилглютаминилглютаминилаланиларгинилтреонилтреонилглютаминилвалилглютаминилглютаминилфенилаланилсерилглютаминилвалилтриптофиллизилпролифенилаланилпролилглютаминилсерилтреонилвалиларгинилфенилаланилпролиглициласпартилвалилтирозиллизилвалилтирозиларгинилтирозиласпарагинилаланилвалиллейциласпартилпролиллейцилизолейцилтреонилаланиллейциллейцилглицилтреонилфенилаланиласпартилтреониларгиниласпарагиниларгинилизолейцилизолейцилглютамилвалилглютамиласпарагинилглютаминилглютаминилсерилпролилтреонилтреонилаланилглютамилтреониллейциласпартилаланилтреониларгиниларгинилвалиласпартиласпартилаланилтреонилвалилаланилизолейциларгинилсерилаланиласпаргинилизолейциласпаргиниллейцилвалиласпарагинилглютамиллейцилвалиларгинилглицилтреонилглициллейцилтирозиласпарагинилглютаминиласпарагинилтреонилфенилаланилглютамилсерилметионилсерилглициллейцилвалилтриптофилтреонилсерилаланилпролилаланилсерин.

Эта анаконда по-английски записывается 1185 буквами[15], а по-русски – всего 1148 буквами.

Теперь, когда большинство из вас просто пробежали глазами приведенное название, возможно, восприняв только «ацетил» и «серин», давайте еще раз взглянем на это слово. Распределение букв в нем оказывается довольно интересным. Буква «е», самая распространенная в английском языке, встречается 65 раз, буква «у» – наименее распространенная – целых 183 раза. Всего на одну букву, «l», приходится 22 % слова (255 раз). Причем буквы «у» и «l» разбросаны не как попало, а зачастую встречаются рядом друг с другом – они образуют 166 пар, расположенных с интервалом около 7 букв. Все это неслучайно. Рассматриваемое нами длинное слово – это название белка, а белки построены на основе шестого, наиболее многофункционального элемента периодической системы – углерода.

В частности, атомы углерода образуют каркасы аминокислот, которые соединяются друг с другом как бусины, образуя белки. Белок вируса табачной мозаики состоит из 159 аминокислот. Поскольку биохимикам зачастую приходится подсчитывать множество аминокислот, они следуют простому лингвистическому принципу. Принято отсекать от названия аминокислоты суффикс «ин» – как в словах «серин» или «изолейцин» – и заменять на «ил», чтобы получался компонент «серил» или «изолейцил». Если расположить эти «илы» в правильном порядке, они точно описывают структуру белка. Мы с вами, не будучи лингвистами, легко понимаем значение составных слов. Так и биохимики в 1950-е годы и начале 1960-х годов давали молекулам официальные наименования вроде «ацетил…серин», чтобы можно было воссоздать формулу молекулы по ее названию. Это точная, хотя и сложная система. Тенденция к соединению корней и созданию составных слов исторически сложилась из-за того, что в развитии химии важнейшую роль сыграли немецкие ученые и немецкий язык, богатый сложными и длинными словами.

Но почему же аминокислоты связываются в первую очередь друг с другом? Дело в том, какое место углерод занимает в периодической системе. Для заполнения своего внешнего энергетического уровня атому углерода требуется восемь электронов – это универсальное правило называется «правилом октета». Напористость разных атомов и молекул в поиске пары у разных веществ отличается, и аминокислоты относятся к более-менее «цивилизованным» соединениям. На одном конце каждой молекулы аминокислоты находятся атомы кислорода, на другом – атомы азота, а в середине – ствол длиной в два атома углерода. Кроме того, в аминокислотах содержится водород, а от главного ствола могут отходить разные веточки, в результате чего могут образоваться 20 разных молекул, но нас это пока не интересует. И углероду, и азоту, и кислороду требуется по восемь электронов для заполнения внешнего энергетического уровня, но одним элементам легче набрать такие комплекты, чем другим. У кислорода, элемента № 8, всего восемь электронов. Два из них находятся на нижнем энергетическом уровне, который заполняется в первую очередь. На внешнем уровне остается шесть – итак, до полного комплекта атому кислорода не хватает двух электронов. Найти два электрона не так сложно, а агрессивный кислород может диктовать условия и обирать другие атомы. Но та же арифметика подсказывает, что бедный углерод, потратив два электрона на заполнение первой оболочки, остается всего при четырех электронах на втором уровне – и до октета ему недостает еще четырех. Сделать это не так просто, поэтому углерод не слишком привередлив при создании химических связей. Он готов соединяться практически с кем угодно.

Такая неприхотливость углерода – это огромное благо. В отличие от кислорода, углероду приходится образовывать связи с другими атомами во всех возможных направлениях. На самом деле, углерод может делиться своими электронами даже с четырьмя атомами одновременно. Таким образом, углерод способен образовывать длинные цепочки и даже объемные сети молекул. Поскольку углерод делится электронами, а не ворует их, углеродные связи получаются надежными и стабильными. Азоту также требуется создавать многочисленные связи для приобретения октета, но не в такой степени, как углероду. Белки, включая упомянутый выше белок табачной мозаики, используют эти простые правила. Атом углерода на конце одной аминокислоты делится электроном с атомом азота на конце другой аминокислоты. Образуются белки, в которых такие связи углерода и азота тянутся почти до бесконечности, как буквы в длинном-длинном слове.

На самом деле, сегодня ученые способны «декодировать» гораздо более длинные молекулы, чем «ацетил…серин». В настоящее время рекорд принадлежит гигантскому белку, название которого, записанное полностью, насчитывало бы 189 819 букв. Но в 1960-е годы, когда в распоряжении ученых появились инструменты для быстрого определения последовательностей аминокислот, биохимики осознали, что вскоре им придется иметь дело с названиями соединений, каждое из которых занимает целую книгу (проверка их правописания была бы адской пыткой). Итак, было решено отказаться от неуклюжей немецкой системы и оперировать более краткими и удобными названиями, даже в научной литературе. Например, вышеупомянутая молекула с названием из 189 819 букв сегодня именуется милосердным словом «титин»[16]. Сомневаюсь, что какое-нибудь печатное слово окажется длиннее полного названия белка табачной мозаики или даже приблизится к нему.

Правда, никто не запрещает лексикографам время от времени просматривать биохимические статьи. Медицина всегда была богатым источником уморительно длинных слов. Оказывается, самое длинное нетехническое слово, содержащееся в Оксфордском словаре английского языка, связано с ближайшим «родственником» углерода – кремнием. Считается, что этот элемент, расположенный в таблице Менделеева под номером 14, может быть альтернативным источником иной, неуглеродной жизни, которая может существовать где-нибудь в других галактиках.

Вспомним, как выглядит генеалогическое древо. На его верхушке находятся родители, а ниже – дети, похожие на них. Подобным образом, углерод имеет больше общих черт с кремнием, расположенным непосредственно под ним, чем со своими соседями слева и справа – бором и азотом. Мы уже знаем, чем это объясняется. Углерод – элемент № 6, кремний – элемент № 14. Их разделяет промежуток в восемь клеток (еще один октет), и это неслучайно. У кремния два электрона заполняют первый энергетический уровень, еще восемь – второй. Остается четыре электрона, поэтому кремний претерпевает те же неудобства, что и углерод. Конечно, в такой ситуации кремний приобретает и некоторую химическую гибкость, подобно углероду. Поскольку именно это свойство углерода непосредственно связано с тем, что из него строится живая материя, заметное химическое сходство кремния с углеродом дало любителям научной фантастики богатую пищу для воображения. Возможно ли, что кремний является основой альтернативных – то есть чужеродных – форм жизни, которая существует по иным, внеземным законам? Но генеалогия не определяет судьбу, и дети никогда не бывают полными копиями своих родителей. Действительно, между углеродом и кремнием очень много общего, но это разные элементы, которые образуют несхожие соединения. И, к сожалению для всех читателей фантастических романов, кремний просто неспособен на такое, на что способен углерод.

Забавно, но мы можем оценить, насколько ограничены возможности кремния по сравнению с углеродом, просто разобрав еще одно слово-рекордсмен. Это английское слово из Оксфордского словаря достигает удивительной длины по той же причине, что и упомянутое выше название белка табачной мозаики. Честно говоря, название белка – своего рода слово-формула, интересное в первую очередь своей новизной. Точно так же интересно бывает рассчитать значение числа «пи» до триллионного знака. А самое длинное нетехническое слово, присутствующее в Оксфордском словаре, – это «pneumonoultramicroscopic silicovolcanoconiosis», буквально переводимое как «воспаление легких, вызванное обильным вдыханием кварцевой вулканической пыли» и состоящее всего из 45 букв. Внимательные читатели могли заметить в этом слове компонент «silico», означающий «кремний». Любители лингвистических курьезов между собой именуют это заболевание «р45», но с медицинской точки зрения неясно, можно ли считать этот недуг отдельной болезнью. Дело в том, что упомянутое слово обозначает лишь частный случай неизлечимого легочного заболевания пневмокониоз. Это слово (в английском языке его можно условно назвать «р16») означает болезнь, напоминающую пневмонию. Пневмокониоз относится к целому классу заболеваний, связанных с вдыханием асбестовой пыли. Пневмокониоз может развиваться и при вдыхании диоксида кремния, основного компонента песка и стекла. Строители, которым приходится целыми днями работать с пескоструями, а также рабочие сборочных линий, занятые в арматурно-изоляторном производстве, часто вдыхают наждачную пыль и заболевают кремниевой разновидностью пневмокониоза. Но поскольку диоксид кремния (SiO2) – самый распространенный минерал в земной коре, есть еще одна группа риска, подверженная пневмокониозу: люди, живущие поблизости от активных вулканов. Самые мощные вулканы превращают силикаты в тончайшую пыль и выбрасывают в воздух мегатонны такого вещества. Эта пыль постоянно проникает в легкие и накапливается в них. Поскольку наши легкие все время имеют дело с диоксидом углерода (углекислым газом), организм с готовностью всасывает и диоксид кремния – очень похожее на углекислый газ вещество. Последствия этого могут быть фатальными. Возможно, именно из-за этого заболевания вымерли многие динозавры, когда астероид или комета размером с мегаполис столкнулся с Землей около 65 миллионов лет назад.

Зная все это, мы можем с легкостью разобрать по составу слово р45, со всеми его приставками и суффиксами. Легочное заболевание, развивающееся в результате вдыхания мельчайшей вулканической кремниевой пыли, которая попадает в легкие к людям, в спешке спасающимся от извержения, пыхтя на бегу, называется «пневмония-обусловленная-микроскопическими-кусочками-вулканических-соединений-кремния». Но прежде, чем вы попытаетесь использовать это слово в разговоре, учтите, что многие борцы за чистоту языка его терпеть не могут. Кто-то придумал его, чтобы выиграть словесную викторину в 1935 году, и многие до сих пор насмешливо замечают, что это не лексема, а конкурсная придумка. Даже почтенные редакторы «Оксфордского словаря английского языка» нелестно характеризуют р45, называя его «вздорным словом», которое лишь «предположительно имеет лексическое значение». Вся эта критика объясняется тем, что р45 – просто расширенный вариант реального слова, переводящегося на русский язык как «пневмокониоз». Р45 было создано на кончике пера, а не возникло в языке в ходе естественных лингвистических процессов.

Давайте подробнее познакомимся с кремнием и поговорим о том, насколько реалистичны гипотезы о существовании кремниевой жизни. Эта тема в научной фантастике не менее заезжена, чем лазерные пушки, но сама идея очень важна, так как расширяет наши «чисто углеродные» представления о живой материи. Энтузиасты этой гипотезы даже могут рассказать вам о некоторых вполне земных существах, жизнедеятельность которых серьезно зависит от кремния. Таковы, например, морские ежи, чьи иглы содержат этот элемент, а также радиолярии (одноклеточные организмы), которые в ходе эволюции обзавелись настоящими кремниевыми доспехами. Успехи современной науки в области вычислительной техники и искусственного интеллекта также позволяют предположить, что на основе кремния можно создать не менее сложные «мозги», чем на базе углерода. Теоретически вполне возможно заменить все нейроны вашего мозга кремниевыми транзисторами.

Но р45 преподает нам урок практической химии, перечеркивающий многие надежды на встречу с кремниевой жизнью. Разумеется, «кремниевым существам» потребовалось бы каким-то образом поглощать соединения кремния и выводить их из организма – например, для восстановления поврежденных тканей. Ведь в обмене веществ у земных существ всегда принимает участие углерод. На Земле почти все создания, которые находятся у основания пищевой цепи (во многих отношениях это самые важные организмы), питаются газообразным диоксидом углерода. Кремний в природе также активно связывается с кислородом, образуя диоксид кремния SiO2. Но диоксид кремния совсем не похож на углекислый газ – это даже не газ, а твердый порошок (пусть даже такой мелкий, как вулканическая пыль). При любой температуре он весьма неблагоприятен для живых организмов. Диоксид кремния переходит в газообразное состояние только при 2200 °C! Клеточное дыхание с участием твердых частиц попросту невозможно, поскольку такие частицы сцепляются друг с другом. Они не текут, сложно захватывать отдельные молекулы таких веществ, а это очень важно для клеток. Даже самые примитивные формы кремниевой жизни, не сложнее ряски, едва могли бы дышать, а у более крупных форм жизни со многими слоями клеток дела обстояли бы еще хуже. Не имея возможности газообмена с окружающей средой, растительные формы кремниевой жизни голодали бы, а животные задыхались бы от отходов собственной жизнедеятельности. Достаточно вспомнить, насколько губительна р45 для наших легких, привыкших иметь дело с углекислым газом.

Смогли бы гипотетические кремниевые микроорганизмы всасывать кремний и избавляться от него какими-то иными способами? Возможно, но соединения кремния не растворяются в воде, а это самая распространенная жидкость во Вселенной. Таким образом, подобные существа были бы сразу лишены тех эволюционных преимуществ, которые нам дает кровь и другие жидкости, обеспечивающие циркуляцию питательных веществ и утилизацию отходов. Кремниевые формы жизни должны были бы выстраивать обмен веществ только на твердых соединениях, которые плохо смешиваются. Таким образом, сложно себе представить, как кремниевые существа могли бы делать что-либо.

Более того, поскольку в атоме кремния содержится больше электронов, чем в атоме углерода, этот атом гораздо массивнее. Порой это не проблема. Кремний вполне мог бы заменить углерод в марсианских аналогах жиров или белков. Но углерод также способен образовывать кольцевые молекулы, которые мы называем сахарами. Кольцо – это форма, для которой характерно значительное напряжение. Именно поэтому в кольцевых молекулах заключено много энергии. Кремниевые молекулы попросту недостаточно гибки, чтобы образовывать кольца. Существует и другая подобная проблема: атомы кремния не могут так тесно располагать свои электроны, чтобы из них создавались двойные связи, присутствующие практически во всех сложных биохимических соединениях. Если два атома совместно используют два электрона, то между ними возникает одинарная связь. Если электронов не два, а четыре, связь двойная. Соответственно, у кремниевой жизни было бы в сотни раз меньше возможностей