Jupiter - Encyclopaedia Universalis - E-Book

Jupiter E-Book

Encyclopaedia Universalis

0,0

Beschreibung

Jupiter , la plus grosse et la plus massive des planètes, constitue le centre d'un vaste système de satellites et d'anneaux étudié de près par plusieurs sondes spatiales: Pioneer-10 en décembre 1973, Pioneer-11 en décembre 1974, Voyager-1 en mars 1979, Voyager-2 en juillet 1979 , Ulysses en février...

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern
Kindle™-E-Readern
(für ausgewählte Pakete)

Seitenzahl: 70

Veröffentlichungsjahr: 2016

Das E-Book (TTS) können Sie hören im Abo „Legimi Premium” in Legimi-Apps auf:

Android
iOS
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Universalis, une gamme complète de resssources numériques pour la recherche documentaire et l’enseignement.

ISBN : 9782341003933

© Encyclopædia Universalis France, 2016. Tous droits réservés.

Photo de couverture : © NikoNomad/Shutterstock

Retrouvez notre catalogue sur www.boutique.universalis.fr

Pour tout problème relatif aux ebooks Universalis, merci de nous contacter directement sur notre site internet :http://www.universalis.fr/assistance/espace-contact/contact

Bienvenue dans ce Grand Article publié par Encyclopædia Universalis.

La collection des Grands Articles rassemble, dans tous les domaines du savoir, des articles :   ·  écrits par des spécialistes reconnus ;   ·  édités selon les critères professionnels les plus exigeants.

Afin de consulter dans les meilleures conditions cet ouvrage, nous vous conseillons d'utiliser, parmi les polices de caractères que propose votre tablette ou votre liseuse, une fonte adaptée aux ouvrages de référence. À défaut, vous risquez de voir certains caractères spéciaux remplacés par des carrés vides (□).

Jupiter

Introduction

Jupiter, la plus grosse et la plus massive des planètes, constitue le centre d’un vaste système de satellites et d’anneaux étudié de près par plusieurs sondes spatiales : Pioneer-10 en décembre 1973, Pioneer-11 en décembre 1974, Voyager-1 en mars 1979, Voyager-2 en juillet 1979, Ulysses en février 1992, Galileo de décembre 1995 à septembre 2003, New Horizons en février et mars 2007.

Jupiter : structure de la haute atmosphère. Acquise le 5 février 1979 par la sonde spatiale Voyager-1 depuis une distance de 28,4 millions de kilomètres, cette image révèle la structure de la haute atmosphère de Jupiter, en bandes parallèles à l'équateur, ainsi que la Grande Tache rouge, immense tourbillon anticyclonique qui, par sa taille, pourrait contenir la Terre. Trois des quatre satellites galiléens sont visibles: Io, devant le disque de la planète géante, Europe, à droite, et Callisto, très sombre, en bas de l'image.

À la différence des planètes telluriques et à l’instar des trois autres planètes géantes, Jupiter ne possède pas de surface solide : il s’agit d’une boule de gaz – essentiellement de l’hydrogène et de l’hélium – qui entoure un noyau probablement composé de fer et de silicates, auxquels s’ajoutent probablement des « glaces d’eau », d’ammoniac et de méthane.

Planètes externes. De droite à gauche sont représentées, à la même échelle, quatre des cinq planètes externes, dans l'ordre croissant de distance au Soleil : Jupiter, Saturne, Uranus et Neptune. La cinquième planète externe, la plus lointaine et la plus petite, Pluton, dont on ne possède aucune image détaillée, ne figure pas dans ce montage.

Jupiter possède un champ magnétique, une magnétosphère et une ionosphère, et est caractérisé par d’intenses émissions radioélectriques. Comme sur la Terre, les aurores polaires se développent dans les zones de latitudes élevées. Le tableau 1 présente les caractéristiques physiques et orbitales des quatre planètes géantes, comparées à celles de la Terre.

Jupiter : aurores polaires. Des aurores polaires apparaissent au voisinage des pôles Nord et Sud de Jupiter sur deux images obtenues dans l'ultraviolet par le télescope spatial Hubble le 7 janvier 1998; ces images sont ici superposées à une image du disque complet de la planète géante acquise dans le visible. Rayonnant dans l'ultraviolet, les aurores polaires de Jupiter ne peuvent être détectées que par des instruments placés dans l'espace.

Planètes géantes. Caractéristiques physiques et orbitales des quatre planètes géantes comparées à celles de la Terre. éantes comparées à celles de la Terre.

E.U.

1. Structure de la planète

Jupiter, comme d’ailleurs les autres planètes géantes du système solaire, est un objet profondément différent des planètes telluriques : Mercure, Vénus, la Terre et Mars sont caractérisés par une surface solide de quelques milliers de kilomètres de diamètre, qu’entoure une atmosphère peu épaisse, voire très ténue dans le cas de Mercure. Au contraire, Jupiter est une énorme boule de gaz, composée essentiellement, comme le Soleil et les autres étoiles, d’hydrogène et d’hélium. Les images fastueuses que nous observons au télescope ou qui ont été transmises par les sondes spatiales sont celles des couches extérieures des nuages. Ces nuages dissimulent la structure profonde de la planète, mais les techniques modernes de mesures des rayonnements électromagnétiques réfléchis ou émis par la planète, le repérage précis des trajectoires des sondes spatiales passant à sa proximité et l’application des lois de la physique permettent de se faire une idée étonnamment précise de l’intérieur de la planète.

Jupiter : l'atmosphère. Le spectacle haut en couleur offert par l'atmosphère de Jupiter est mis en évidence sur cette vue, élaborée à partir d'images obtenues en 1979 par la sonde Voyager-2, et dont les contrastes ont été amplifiés. L'atmosphère de Jupiter est dominée par une alternance de bandes colorées qui ceinturent la planète, parallèlement à l'équateur. Ces bandes sont réparties conventionnellement en deux types en fonction de leur brillance: les zones, claires, et les ceintures, plus sombres. On aperçoit à gauche le tourbillon anticyclonique que constitue la Grande Tache rouge.

L’analyse du rayonnement planétaire dans l’ultraviolet, le visible, l’infrarouge et le domaine radioélectrique, tant à partir des observatoires terrestres qu’à l’aide des appareils embarqués à bord des sondes spatiales, a permis de déterminer la température et la composition chimique des couches extérieures de Jupiter sur une épaisseur d’environ 2 000 kilomètres, ce qui est évidemment minime comparé aux quelque 70 000 kilomètres du rayon de Jupiter. Que verrait donc un observateur descendant dans Jupiter, armé des moyens d’investigation nécessaires... et indestructible ?

Venant de l’espace interplanétaire et se dirigeant vers le centre de la planète, notre voyageur rencontre d’abord une haute atmosphère extrêmement ténue, constituée essentiellement d’hydrogène, et où la température est de l’ordre de 1 500 kelvins. Il aborde ensuite, à des niveaux où la pression est de l’ordre de 1 millionième de la pression de l’atmosphère terrestre au sol, une zone au-dessous de laquelle la turbulence est assez forte pour que les divers composants atmosphériques se mélangent à tout moment. La température à cet endroit n’est plus que d’environ 370 kelvins ; elle continue à décroître à mesure que l’on descend. À partir de ce moment, l’atmosphère est composée d’environ 90 p. 100 d’hydrogène moléculaire (H2) et de près de 10 p. 100 d’hélium. S’y ajoutent une petite quantité de méthane (CH4) – de l’ordre de 0,1 p. 100 – et des quantités encore plus faibles d’acétylène (C2H2) et d’éthane (C2H6) ; ces deux derniers gaz sont produits dans la haute atmosphère par le rayonnement ultraviolet solaire, qui casse les molécules de méthane en morceaux qui se recombinent ultérieurement en molécules plus compliquées, les hydrocarbures. L’acétylène et l’éthane sont les seuls hydrocarbures qui ont été détectés de manière sûre, mais il est probable que d’autres existent en quantités très faibles. D’après des analyses des données des sondes, l’éthylène (C2H4), le benzène (C6H6) et le méthylacétylène (C3H4) seraient aussi présents.

Descendant encore, le voyageur détecte, à des niveaux où la pression est de l’ordre de quelques millièmes d’atmosphère, de l’ammoniac (NH3) en quantité infime mais néanmoins suffisante pour pouvoir être détectée à partir de satellites d’observation astronomique circumterrestres. Il commence aussi à découvrir une brume peu épaisse composée de petites particules de diamètre inférieur au micromètre et dont la nature est encore inconnue (il pourrait s’agir de petits cristaux d’ammoniac ou bien de particules d’hydrocarbures à l’état solide ou liquide). Arrivé à un niveau voisin d’un dixième d’atmosphère, le voyageur se trouve alors à des températures de l’ordre de 120 kelvins, dans une région appelée tropopause, à partir de laquelle la température va recommencer à croître continûment jusqu’au centre de la planète. À ce niveau, la quantité d’ammoniac croît extrêmement rapidement, jusqu’à atteindre quelques dix-millièmes vers 0,6 atmosphère. Apparaît également un gaz appelé phosphine (PH3) qui, bien qu’en quantité modeste (moins de 1 millionième), absorbe énormément le rayonnement infrarouge, comme d’ailleurs l’ammoniac. Vers 0,3-0,5 atmosphère de pression, le voyageur découvre une couche de nuages blancs comme les cirrus dans l’atmosphère terrestre, composés de cristaux d’ammoniac dont les dimensions pourraient atteindre 100 micromètres. Cette couche nuageuse est peu opaque dans le domaine visible, de sorte qu’elle n’empêche pas de voir à partir de la Terre les nuages colorés situés plus profondément, vraisemblablement vers 2 ou 3 atmosphères de pression. En revanche, les « cirrus » d’ammoniac absorbent fortement le rayonnement infrarouge, bloquant ainsi le rayonnement des couches plus chaudes situées à plus grande profondeur. La couche d’ammoniac n’est cependant pas homogène et, à divers endroits de Jupiter, notamment dans la zone équatoriale, elle est peu dense, ou inexistante, permettant ainsi au rayonnement infrarouge à 5 micromètres de nous parvenir. Les nuages colorés sont en revanche opaques à l’infrarouge comme au visible. Leur nature est encore inconnue : s’agit-il de sulfure d’acide (NH4SH), de composés phosphorés, voire de composés organiques complexes ?

Vers 3 ou 4 atmosphères, le voyageur commence à détecter d’autres composants atmosphériques, comme la vapeur d’eau, le germane (GeH4