Regles pour la direction de l’esprit - René Descartes - E-Book

Regles pour la direction de l’esprit E-Book

Rene Descartes

0,0
1,49 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Les Règles pour la direction de l'esprit, composées entre 1628 et 1629, et publiées à titre posthume, constituent le premier grand texte philosophique de Descartes (1596-1650). Par ces règles, l'auteur vise à expliciter le mode de résolution de l'ensemble des questions qui peuvent se poser à l'homme, et à manifester la foncière unité de l'esprit, d'une manière qui annonce le Discours de la méthode (1637). La méthode y est présentée comme mise en ordre des natures, et les principales opérations de l'esprit, intuition et déduction, y sont exposées. Conjointement, Descartes formule le projet de mathesis universalis, cette science universelle qui, en tant que science générale de l'ordre et de la mesure, doit permettre de résoudre l'ensemble des questions, et pas seulement celles qui sont mathématisables au sens strict. Autant de thèmes qui font de l'étude des Règles le complément de celle du Discours de la méthode. 

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB

Veröffentlichungsjahr: 2018

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Règles pour la direction de l’esprit

René Descartes

Publication: 1628Catégorie(s): Non-Fiction, Sciences humaines, Philosophie
A Propos Descartes:

René Descartes (March 31, 1596 – February 11, 1650), also known as Renatus Cartesius (latinized form), was a highly influential French philosopher, mathematician, scientist, and writer. Dubbed the "Founder of Modern Philosophy", and the "Father of Modern Mathematics", much of subsequent western philosophy is a reaction to his writings, which have been closely studied from his time down to the present day. His influence in mathematics is also apparent, the Cartesian coordinate system being used in plane geometry and algebra being named after him, and he was one of the key figures in the Scientific Revolution. Descartes frequently contrasted his views with those of his predecessors. In the opening section of the Passions of the Soul, a treatise on the Early Modern version of what are now commonly called emotions, he goes so far as to assert that he will write on his topic "as if no one had written on these matters before". Nevertheless many elements of his philosophy have precedents in late Aristotelianism, the revived Stoicism of the 16th century, or in earlier philosophers like St. Augustine. In his natural philosophy, he differs from the Schools on two major points: first, he rejects the analysis of corporeal substance into matter and form; second, he rejects any appeal to ends—divine or natural—in explaining natural phenomena. In his theology, he insists on the absolute freedom of God’s act of creation. Descartes was a major figure in 17th century continental rationalism, later advocated by Baruch Spinoza and Gottfried Leibniz, and opposed by the empiricist school of thought consisting of Hobbes, Locke, Berkeley, and Hume. Leibniz, Spinoza and Descartes were all versed in mathematics as well as philosophy, and Descartes and Leibniz contributed greatly to science as well. As the inventor of the Cartesian coordinate system, Descartes founded analytic geometry, that bridge between algebra and geometry crucial to the invention of calculus and analysis. Descartes's reflections on mind and mechanism began the strain of western thought that much later, impelled by the invention of the electronic computer and by the possibility of machine intelligence, blossomed into, e.g., the Turing test. His most famous statement is: Cogito ergo sum (French: Je pense, donc je suis; English: I think, therefore I am), found in §7 of part I of Principles of Philosophy (Latin) and in part IV of Discourse on the Method (French). 

Règle première.

Règle première.

 

Le but des études doit être de diriger l’esprit de manière à ce qu’il porte des jugements solides et vrais sur tout ce qui se présente à lui.

Toutes les fois que les hommes aperçoivent une ressemblance entre deux choses, ils sont dans l’ha­bitude d’appliquer à l’une et à l’autre, même en ce qu’elles offrent de différent, ce qu’ils ont re­connu vrai de l’une des deux. C’est ainsi qu’ils comparent, mal à propos, les sciences qui con­sistent uniquement dans le travail de l’esprit, avec les arts qui ont besoin d’un certain usage et d’une certaine disposition corporelle. Et comme ils voient qu’un seul homme ne peut suffire à apprendre tous les arts à la fois, mais que celui-là seul y devient habile qui n’en cultive qu’un seul, parce que les mêmes mains peuvent difficilement labourer la terre et toucher de la lyre, et se prêter en même temps à des offices aussi divers, ils pensent qu’il en est ainsi des sciences ; et les distinguant entre elles par les objets dont elles s’occupent, ils croient qu’il faut les étudier à part et indépendamment l’une de l’autre. Or c’est là une grande erreur ; car comme les sciences toutes ensemble ne sont rien autre chose que l’intelligence humaine, qui reste une et toujours la même quelle que soit la variété des objets auxquels elle s’applique, sans que cette variété apporte à sa nature plus de changements que la diversité des objets n’en apporte à la nature du soleil qui les éclaire, il n’est pas besoin de cir­conscrire l’esprit humain dans aucune limite ; en effet, il n’en est pas de la connaissance d’une vérité comme de la pratique d’un art ; une vérité découverte nous aide à en découvrir une autre, bien loin de nous faire obstacle. Et certes il me semble étonnant que la plupart des hommes étudient avec soin les plantes et leurs vertus, le cours des astres, les transformations des mé­taux, et mille objets semblables, et qu’à peine un petit nombre s’occupe de l’intelligence ou de cette science universelle dont nous parlons ; et cependant si les autres études ont quelque chose d’estimable, c’est moins pour elles-mêmes que pour les secours qu’elles apportent à celle-ci. Aussi n’est-ce pas sans motif que nous posons cette règle à la tête de toutes les autres ; car rien ne nous détourne davantage de la recherche de la vérité que de di­riger nos efforts vers des buts particuliers, au lieu de les tourner vers cette fin unique et générale. Je ne parle pas ici des buts mauvais et condamnables, tels que la vaine gloire et la recherche d’un gain honteux ; il est clair que le mensonge et les petites ruses des esprits vulgaires y mèneront par un che­min plus court que ne le pourrait faire une con­noissance solide du vrai. J’entends ici parler des buts honnêtes et louables ; car ils sont pour nous un sujet d’illusions dont nous avons peine à nous défendre. En effet, nous étudions les sciences utiles ou pour les avantages qu’on en retire dans la vie, et pour ce plaisir qu’on trouve dans la contemplation du vrai, et qui, dans ce monde, est presque le seul bonheur pur et sans mélange. Voilà deux objets légitimes que nous pouvons nous proposer dans l’étude des sciences ; mais si au milieu de nos tra­vaux nous venons à y penser, il se peut faire qu’un peu de précipitation nous fasse négliger beaucoup de choses qui seraient nécessaires à la connoissance des autres, parce qu’au premier abord elles nous paroîtront ou peu utiles ou peu dignes de notre curiosité. Ce qu’il faut d’abord reconnoître, c’est que les sciences sont tellement liées ensemble qu’il est plus facile de les apprendre toutes à la fois que d’en détacher une seule des autres. Si donc on veut sérieusement chercher la vérité, il ne faut pas s’ap­pliquer à une seule science ; elles se tiennent toutes entre elles et dépendent mutuellement l’une de l’autre. Il faut songer à augmenter ses lumières naturelles, non pour pouvoir résoudre telle ou telle difficulté de l’école, mais pour que l’intelli­gence puisse montrer à la volonté le parti qu’elle doit prendre dans chaque situation de la vie. Celui qui suivra cette méthode verra qu’en peu de temps il aura fait des progrès merveilleux, et bien supé­rieurs à ceux des hommes qui se livrent aux études spéciales, et que s’il n’a pas obtenu les résultats que ceux-ci veulent atteindre, il est parvenu à un but plus élevé, et auquel leurs vœux n’eussent ja­mais osé prétendre.

Règle deuxième.

Règle deuxième.

Il ne faut nous occuper que des objets dont notre esprit paroît capable d’acquérir une connaissance certaine et indubitable.

Toute science est une connoissance certaine et évidente ; et celui qui doute de beaucoup de choses n’est pas plus savant que celui qui n’y a jamais songé, mais il est moins savant que lui, si sur quel­ques unes de ces choses il s’est formé des idées fausses. Aussi vaut-il mieux ne jamais étudier que de s’occuper d’objets tellement difficiles, que dans l’impossibilité de distinguer le vrai du faux, on soit obligé d’admettre comme certain ce qui est douteux ; on court en effet plus de risques de perdre la science qu’on a, que de l’augmenter. C’est pourquoi nous rejetons par cette règle toutes ces connoissances qui ne sont que probables ; et nous pensons qu’on ne peut se fier qu’à celles qui sont parfaitement vérifiées, et sur lesquelles on ne peut élever aucun doute. Et quoique les savants se per­suadent peut-être que les connoissances de cette espèce sont en bien petit nombre, parce que sans doute, par un vice naturel à l’esprit humain, ils ont négligé de porter leur attention sur ces objets, comme trop faciles et à la portée de tous, je ne crains pas cependant de leur déclarer qu’elles sont plus nombreuses qu’ils ne pensent, et qu’elles suf­fisent pour démontrer avec évidence un nombre infini de propositions, sur lesquelles ils n’ont pu émettre jusqu’ici que des opinions probables, opi­nions que bientôt, pensant qu’il étoit indigne d’un savant d’avouer qu’il ignore quelque chose, ils se sont habitués à parer de fausses raisons, de telle sorte qu’ils ont fini par se les persuader à eux-mêmes, et les ont débitées comme choses avérées.

Mais si nous observons rigoureusement notre règle, il restera peu de choses à l’étude desquelles nous puissions nous livrer. Il existe à peine dans les sciences une seule question sur laquelle des hommes d’esprit n’aient pas été d’avis différents. Or, toutes les fois que deux hommes portent sur la même chose un jugement contraire, il est certain que l’un des deux se trompe. Il y a plus, aucun d’eux ne possède la vérité ; car s’il en avoit une vue claire et nette, il pourroit l’exposer à son adver­saire, de telle sorte qu’elle finiroit par forcer sa conviction. Nous ne pouvons donc pas espérer d’obtenir la connoissance complète de toutes les choses sur lesquelles on n’a que des opinions pro­bables, parce que nous ne pouvons sans présomp­tion espérer de nous plus que les autres n’ont pu faire. Il suit de là que si nous comptons bien, il ne reste parmi les sciences faites que la géométrie et l’arithmétique, auxquelles l’observation de notre règle nous ramène.

Nous ne condamnons pas pour cela la manière de philosopher à laquelle on s’est arrêté jusqu’à ce jour, ni l’usage des syllogismes probables, armes excellentes pour les combats de la dialectique. En effet, ils exercent l’esprit des jeunes gens, et éveil­lent en eux l’activité de l’émulation. D’ailleurs il vaut mieux former leur esprit à des opinions, même incertaines, puisqu’elles ont été un sujet de controverse entre les savants, que de les abandon­ner à eux-mêmes libres et sans guides ; car alors ils courroient risque de tomber dans des préci­pices ; mais tant qu’ils suivent les traces qu’on leur a marquées, quoiqu’ils puissent quelquefois s’écar­ter du vrai, toujours est-il qu’ils s’avancent dans une route plus sûre, au moins en ce qu’elle a été reconnue par des plus habiles. Et nous aussi nous nous félicitons d’avoir reçu autrefois l’éducation de l’école ; mais comme maintenant nous sommes déliés du serment qui nous enchaînoit aux paroles du maître, et que, notre âge étant devenu assez mûr, nous avons soustrait notre main aux coups de la férule, si nous voulons sérieusement nous proposer des règles, à l’aide desquelles nous puis­sions parvenir au faîte de la connoissance humaine, mettons au premier rang celle que nous venons d’énoncer, et gardons-nous d’abuser de notre loi­sir, négligeant, comme font beaucoup de gens, les études aisées, et ne nous appliquant qu’aux choses difficiles. Ils pourront, il est vrai, former sur ces choses des conjectures subtiles et des systèmes probables ; mais, après beaucoup de travaux, ils fini­ront par s’apercevoir qu’ils ont augmenté la somme des doutes, sans avoir appris aucune science.

Mais comme nous avons dit plus haut que, par­mi les sciences faites, il n’existe que l’arithmétique et la géométrie qui soient entièrement exemptes de fausseté ou d’incertitude, pour en donner la raison exacte, remarquons que nous arrivons à la connoissance des choses par deux voies, c’est à sa­voir, l’expérience et la déduction. De plus, l’expé­rience est souvent trompeuse ; la déduction, au con­traire, ou l’opération par laquelle on infère une chose d’une autre, peut ne pas se faire, si on ne l’aperçoit pas, mais n’est jamais mal faite, même par l’esprit le moins accoutumé à raisonner. Cette opération n’emprunte pas un grand secours des liens dans lesquels la dialectique embarrasse la raison humaine, en pensant la conduire ; encore bien que je sois loin de nier que ces formes ne puis­sent servir à d’autres usages. Ainsi, toutes les er­reurs dans lesquelles peuvent tomber, je ne dis pas les animaux, mais les hommes, viennent, non d’une induction fausse, mais de ce qu’on part de certaines expériences peu comprises, ou qu’on porte des jugements hasardés et qui ne reposent sur aucune base solide.

Tout ceci démontre comment il se fait que l’a­rithmétique et la géométrie sont de beaucoup plus certaines que les autres sciences, puisque leur objet à elles seules est si clair et si simple, qu’elles n’ont besoin de rien supposer que l’expérience puisse révoquer en doute, et que toutes deux pro­cèdent par un enchaînement de conséquences que la raison déduit l’une de l’autre. Aussi sont-elles les plus faciles et les plus claires de toutes les sciences, et leur objet est tel que nous le désirons ; car, à part l’inattention, il est à peine supposable qu’un homme s’y égare. Il ne faut cependant pas s’étonner que beaucoup d’esprits s’appliquent de préférence à d’autres études ou à la philosophie. En effet chacun se donne plus hardiment le droit de deviner dans un sujet obscur que dans un sujet clair, et il est bien plus facile d’avoir sur une ques­tion quelconque quelques idées vagues, que d’ar­river à la vérité même sur la plus facile de toutes. De tout ceci il faut conclure, non que l’arithmétique et la géométrie soient les seules sciences qu’il faille apprendre, mais que celui qui cherche le chemin de la vérité ne doit pas s’occuper d’un objet dont il ne puisse avoir une connoissance égale à la certitude des démonstrations arithméti­ques et géométriques.