Vergleichende Betrachtungen über neuere geometrische Forschungen - Klein, Felix - kostenlos E-Book

Vergleichende Betrachtungen über neuere geometrische Forschungen E-Book

Felix, Klein

0,0
0,00 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Gratis E-Book downloaden und überzeugen wie bequem das Lesen mit Legimi ist.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
MOBI

Seitenzahl: 82

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



The Project Gutenberg EBook of Vergleichende Betrachtungen über neueregeometrische Forschungen, by Felix KleinThis eBook is for the use of anyone anywhere at no cost and withalmost no restrictions whatsoever.  You may copy it, give it away orre-use it under the terms of the Project Gutenberg License includedwith this eBook or online at www.gutenberg.orgTitle: Vergleichende Betrachtungen über neuere geometrische ForschungenAuthor: Felix KleinRelease Date: November 16, 2011 [EBook #38033]Language: German*** START OF THIS PROJECT GUTENBERG EBOOK VERGLEICHENDE BETRACHTUNGEN ***Produced by R.S.

Vergleichende Betrachtungen über neuere geometrische Forschungen

Felix Klein

1872

Erlangen

Verlag von Andreas Deichert

§.1. Gruppen von räumlichen Transformationen. Hauptgruppe. Aufstellung eines allgemeinen Problems.§.2. Transformationsgruppen, von denen die eine die andere umfasst, werden nach einander adjungirt. Die verschiedenen Typen geometrischer Forschung und ihr gegenseitiges Verhältniss.§.3. Die projectivische Geometrie.§.4. Uebertragung durch Abbildung.§.5. Von der Willkürlichkeit in der Wahl des Raumelements. Das Hessesche Uebertragungsprincip. Die Liniengeometrie.§.6. Die Geometrie der reciproken Radien. Die Interpretation von x + iy.§.7. Erweiterungen des Vorangehenden. Lies Kugelgeometrie.§.8. Aufzählung weiterer Methoden, denen eine Gruppe von Puncttransformationen zu Grunde liegt.1. Die Gruppe der rationalen Umformungen.2. Die Analysis situs.3. Die Gruppe aller Puncttransformationen.§.9. Von der Gruppe aller Berührungstransformationen.§.10. Ueber beliebig ausgedehnte Mannigfaltigkeiten.1. Die projectivische Behandlungsweise oder die moderne Algebra (Invariantentheorie).2. Die Mannigfaltigkeit von constantem Krümmungsmaße.3. Die ebene Mannigfaltigkeit.Schlussbemerkungen.Noten.I. Ueber den Gegensatz der synthetischen und analytischen Richtung in der neueren Geometrie.II. Trennung der heutigen Geometrie in Disciplinen.III. Ueber den Werth räumlicher Anschauung.IV. Ueber Mannigfaltigkeiten von beliebig vielen Dimensionen.V. Ueber die sogenannte Nicht-Euklidische Geometrie.VI. Liniengeometrie als Untersuchung einer Mannigfaltigkeit von constantem Krümmungsmaße.VII. Zur Interpretation der binären Formen.

Unter den Leistungen der letzten fünfzig Jahre auf dem Gebiete der Geometrie nimmt die Ausbildung der projectivischen1 Geometrie die erste Stelle ein. Wenn es anfänglich schien, als sollten die sogenannten metrischen Beziehungen ihrer Behandlung nicht zugänglich sein, da sie beim Projiciren nicht ungeändert bleiben, so hat man in neuerer Zeit gelernt, auch sie vom projectivischen Standpuncte aufzufassen, so dass nun die projectivische Methode die gesammte Geometrie umspannt. Die metrischen Eigenschaften erscheinen in ihr nur nicht mehr als Eigenschaften der räumlichen Dinge an sich, sondern als Beziehungen derselben zu einem Fundamental-Gebilde, dem unendlich fernen Kugelkreise.

Vergleicht man mit der so allmählich gewonnenen Auffassungsweise der räumlichen Dinge die Vorstellungen der gewöhnlichen (elementaren) Geometrie, so entsteht die Frage nach einem allgemeinen Principe, nach welchem die beiden Methoden sich ausbilden konnten. Diese Frage erscheint um so wichtiger als sich neben die elementare und die projectivische Geometrie, ob auch minder entwickelt, eine Reihe anderer Methoden stellt, denen man dasselbe Recht selbständiger Existenz zugestehen muss. Dahin gehören die Geometrie der reciproken Radien, die Geometrie der rationalen Umformungen etc., wie sie in der Folge noch erwähnt und dargestellt werden sollen.

Wenn wir es im Nachstehenden unternehmen, ein solches Princip aufzustellen, so entwickeln wir wohl keinen eigentlich neuen Gedanken, sondern umgränzen nur klar und deutlich, was mehr oder minder bestimmt von Manchem gedacht worden ist. Aber es schien um so berechtigter, derartige zusammenfassende Betrachtungen zu publiciren, als die Geometrie, die doch ihrem Stoffe nach einheitlich ist, bei der raschen Entwicklung, die sie in der letzten Zeit genommen hat, nur zu sehr in eine Reihe von beinahe getrennten Disciplinen zerfallen ist2, die sich ziemlich unabhängig von einander weiter bilden. Es lag dabei aber auch noch die besondere Absicht vor, Methoden und Gesichtspuncte darzulegen, welche von Lie und mir in neueren Arbeiten entwickelt wurden. Es haben unsere beiderseitigen Arbeiten, auf wie verschiedenartige Gegenstände sie sich auch bezogen, übereinstimmend auf die hier dargelegte allgemeine Auffassungsweise hingedrängt, so dass es eine Art von Nothwendigkeit war, auch einmal diese zu erörtern und von ihr aus die betr. Arbeiten nach Inhalt und Tendenz zu characterisiren.

War bisher nur von geometrischen Forschungen die Rede, so sollen darunter mit verstanden sein die Untersuchungen über beliebig ausgedehnte Mannigfaltigkeiten, die sich, unter Abstreifung des für die rein mathemathische Betrachtung unwesentlichen räumlichen Bildes3, aus der Geometrie entwickelt haben4. Es gibt bei der Untersuchung von Mannigfaltigkeiten eben solche verschiedene Typen, wie in der Geometrie, und es gilt, wie bei der Geometrie, das Gemeinsame und das Unterscheidende unabhängig von einander unternommener Forschungen hervorzuheben. Abstract genommen war es im Folgenden nur nöthig, schlechthin von mehrfach ausgedehnten Mannigfaltigkeiten zu reden; aber durch Anknüpfung an die geläufigeren räumlichen Vorstellungen wird die Auseinandersetzung einfacher und verständlicher. Indem wir von der Betrachtung der geometrischen Dinge ausgehen und an ihnen als einem Beispiele die allgemeinen Gedanken entwickeln, verfolgen wir den Gang, den die Wissenschaft in ihrer Ausbildung genommen hat, und den bei der Darstellung zu Grunde zu legen gewöhnlich das Vorteilhafteste ist. –

Eine vorläufige Exposition des im Folgenden besprochenen Inhaltes ist hier wohl nicht möglich, da sich derselbe kaum in eine knappere Form5 fügen will; die Ueberschriften der Paragraphen werden den allgemeinen Fortschritt des Gedankens angeben. Ich habe zum Schlusse eine Reihe von Noten zugefügt, in welchen ich entweder, wo es im Interesse der allgemeinen Auseinandersetzung des Textes nützlich schien, besondere Punkte weiter entwickelt habe, oder in denen ich bemüht war, den abstract mathematischen Standpunkt, der für die Betrachtungen des Textes maßgebend ist, gegen verwandte abzugränzen.

§.1. Gruppen von räumlichen Transformationen. Hauptgruppe. Aufstellung eines allgemeinen Problems.

Der wesentlichste Begriff, der bei den folgenden Auseinandersetzungen nothwendig ist, ist der einer Gruppe von räumlichen Aenderungen.

Beliebig viele Transformationen des Raumes6 ergeben zusammengesetzt immer wieder eine Transformation. Hat nun eine gegebene Reihe von Transformationen die Eigenschaft, dass jede Aenderung, die aus den ihr angehörigen durch Zusammensetzung hervorgeht, ihr selbst wieder angehört, so soll die Reihe eine Transformationsgruppe7 genannt werden.

Ein Beispiel für eine Transformationsgruppe bildet die Gesammtheit der Bewegungen (jede Bewegung als eine auf den ganzen Raum ausgeführte Operation betrachtet). Eine in ihr enthaltene Gruppe bilden etwa die Rotationen um einen Punct8. Eine Gruppe, welche umgekehrt die Gruppe der Bewegungen umfasst, wird durch die Gesammtheit der Collineationen vorgestellt. Die Gesammtheit der dualistischen Umformungen bildet dagegen keine Gruppe — denn zwei dualistische Umformungen ergeben zusammen wieder eine Collineation —, wohl aber wird wieder eine Gruppe erzeugt, wenn man die Gesammtheit der dualistischen mit der Gesammtheit der collinearen zusammenfügt9.

Es gibt nun räumliche Transformationen, welche die geometrischen Eigenschaften räumlicher Gebilde überhaupt ungeändert lassen. Geometrische Eigenschaften sind nämlich ihrem Begriffe nach unabhängig von der Lage, die das zu untersuchende Gebilde im Raume einnimmt, von seiner absoluten Grösse, endlich auch von dem Sinne10, in welchem seine Theile geordnet sind. Die Eigenschaften eines räumlichen Gebildes bleiben also ungeändert durch alle Bewegungen des Raumes, durch seine Aehnlichkeitstransformationen, durch den Process der Spiegelung, sowie durch alle Transformationen, die sich aus diesen zusammensetzen. Den Inbegriff aller dieser Transformationen bezeichnen wir als die Hauptgruppe11 räumlicher Aenderungen; geometrische Eigenschaften werden durch die Transformationen der Hauptgruppe nicht geändert. Auch umgekehrt kann man sagen: Geometrische Eigenschaften sind durch ihre Unveränderlichkeit gegenüber den Transformationen der Hauptgruppe characterisirt. Betrachtet man nämlich den Raum einen Augenblick als unbeweglich etc., als eine starre Mannigfaltigkeit, so hat jede Figur ein individuelles Interesse; von den Eigenschaften, die sie als Individuum hat, sind es nur die eigentlich geometrischen, welche bei den Aenderungen der Hauptgruppe erhalten bleiben. Dieser hier etwas unbestimmt formulirte Gedanke wird im weiteren Verlaufe der Auseinandersetzung deutlicher erscheinen.

Streifen wir jetzt das mathematisch unwesentliche sinnliche Bild ab, und erblicken im Raume nur eine mehrfach ausgedehnte Mannigfaltigkeit, also, indem wir an der gewohnten Vorstellung des Punctes als Raumelement festhalten, eine dreifach ausgedehnte. Nach Analogie mit den räumlichen Transformationen reden wir von Transformationen der Mannigfaltigkeit; auch sie bilden Gruppen. Nur ist nicht mehr, wie im Raume, eine Gruppe vor den übrigen durch ihre Bedeutung ausgezeichnet; jede Gruppe ist mit jeder anderen gleichberechtigt. Als Verallgemeinerung der Geometrie entsteht so das folgende umfassende Problem:

Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die Transformationen der Gruppe nicht geändert werden.

In Anlehnung an die moderne Ausdrucksweise, die man freilich nur auf eine bestimmte Gruppe, die Gruppe aller linearen Umformungen, zu beziehen pflegt, mag man auch so sagen:

Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben. Man entwickele die auf die Gruppe bezügliche Invariantentheorie.

Dies ist das allgemeine Problem, welches die gewöhnliche Geometrie nicht nur, sondern namentlich auch die hier zu nennenden neueren geometrischen Methoden und die verschiedenen Behandlungsweisen beliebig ausgedehnter Mannigfaltigkeiten unter sich begreift. Was besonders betont sein mag, ist die Willkürlichkeit, die hinsichtlich der Wahl der zu adjungirenden Transformationsgruppe besteht, und die daraus fliessende und in diesem Sinne zu verstehende gleiche Berechtigung aller sich unter die allgemeine Forderung subsumirenden Betrachtungsweisen.

§.2. Transformationsgruppen, von denen die eine die andere umfasst, werden nach einander adjungirt. Die verschiedenen Typen geometrischer Forschung und ihr gegenseitiges Verhältniss.

Da die geometrischen Eigenschaften räumlicher Dinge durch alle Transformationen der Hauptgruppe ungeändert bleiben, so ist es an und für sich absurd, nach solchen Eigenschaften derselben zu fragen, bei denen dies nur gegenüber einem Theile dieser Transformationen der Fall ist. Diese Fragestellung wird indess berechtigt, ob auch nur formal, wenn wir die räumlichen Gebilde in ihrer Beziehung zu fest gedachten Elementen untersuchen. Betrachten wir z. B., wie in der sphärischen Trigonometrie, die räumlichen Dinge unter Auszeichnung eines Punctes. Dann ist zunächst die Forderung: die unter Adjunction der Hauptgruppe invarianten Eigenschaften nicht mehr der räumlichen Dinge an sich, sondern des von ihnen mit dem gegebenen Puncte gebildeten Systems zu entwickeln. Aber dieser Forderung können wir die andere Form ertheilen: Man untersuche die räumlichen Gebilde an sich hinsichtlich solcher Eigenschaften, welche ungeändert bleiben durch diejenigen Transformationen der Hauptgruppe, welche noch stattfinden können, wenn wir den Punct fest halten. Mit anderen Worten: Es ist dasselbe, ob wir die räumlichen Gebilde im Sinne der Hauptgruppe untersuchen und ihnen den gegebenen Punct hinzufügen, oder ob wir, ohne ihnen irgend ein Gegebenes hinzuzufügen, die Hauptgruppe durch die in ihr enthaltene Gruppe ersetzen, deren Transformationen den bez. Punct ungeändert lassen.