122,99 €
A fresh introduction to random processes utilizing signal theory
By incorporating a signal theory basis, A Signal Theoretic Introduction to Random Processes presents a unique introduction to random processes with an emphasis on the important random phenomena encountered in the electronic and communications engineering field. The strong mathematical and signal theory basis provides clarity and precision in the statement of results. The book also features:
A Signal Theoretic Introduction to Random Processes is a useful textbook for upper-undergraduate and graduate-level courses in applied mathematics as well as electrical and communications engineering departments. The book is also an excellent reference for research engineers and scientists who need to characterize random phenomena in their research.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 704
Veröffentlichungsjahr: 2015
COVER
TITLE PAGE
ABOUT THE AUTHOR
PREFACE
1 A SIGNAL THEORETIC INTRODUCTION TO RANDOM PROCESSES
1.1 INTRODUCTION
1.2 MOTIVATION
1.3 BOOK OVERVIEW
2 BACKGROUND: MATHEMATICS
2.1 INTRODUCTION
2.2 SET THEORY
2.3 FUNCTION THEORY
2.4 MEASURE THEORY
2.5 MEASURABLE FUNCTIONS
2.6 LEBESGUE INTEGRATION
2.7 CONVERGENCE
2.8 LEBESGUE–STIELTJES MEASURE
2.9 LEBESGUE–STIELTJES INTEGRATION
2.10 MISCELLANEOUS RESULTS
2.11 PROBLEMS
APPENDIX 2.A PROOF OF THEOREM 2.1
APPENDIX 2.B PROOF OF THEOREM 2.2
APPENDIX 2.C PROOF OF THEOREM 2.7
APPENDIX 2.D PROOF OF THEOREM 2.8
APPENDIX 2.E PROOF OF THEOREM 2.10
3 BACKGROUND
3.1 INTRODUCTION
3.2 SIGNAL ORTHOGONALITY
3.3 THEORY FOR DIRICHLET POINTS
3.4 DIRAC DELTA
3.5 FOURIER THEORY
3.6 SIGNAL POWER
3.7 THE POWER SPECTRAL DENSITY
3.8 THE AUTOCORRELATION FUNCTION
3.9 POWER SPECTRAL DENSITY–AUTOCORRELATION FUNCTION
3.10 RESULTS FOR THE INFINITE INTERVAL
3.11 CONVERGENCE OF FOURIER COEFFICIENTS
3.12 CRAMER’S REPRESENTATION AND TRANSFORM
3.13 PROBLEMS
APPENDIX 3.A PROOF OF THEOREM 3.5
APPENDIX 3.B PROOF OF THEOREM 3.8
APPENDIX 3.C FOURIER TRANSFORM AND PSD OF A SINUSOID
APPENDIX 3.D PROOF OF Theorem 3.14
APPENDIX 3.E PROOF OF Theorem 3.19
APPENDIX 3.F PROOF OF Theorem 3.23
APPENDIX 3.G PROOF OF THEOREM 3.24
APPENDIX 3.H PROOF OF THEOREM 3.25
APPENDIX 3.I PROOF OF THEOREM 3.26
APPENDIX 3.J CRAMER TRANSFORM OF UNIT STEP FUNCTION
APPENDIX 3.K CRAMER TRANSFORM FOR SINUSOIDAL SIGNALS
APPENDIX 3.L PROOF OF THEOREM 3.30
APPENDIX 3.M PROOF OF THEOREM 3.31
APPENDIX 3.N PROOF OF THEOREM 3.32
APPENDIX 3.O PROOF OF THEOREM 3.33
4 BACKGROUND: PROBABILITY AND RANDOM VARIABLE THEORY
4.1 INTRODUCTION
4.2 BASIC CONCEPTS: EXPERIMENTS-PROBABILITY THEORY
4.3 THE RANDOM VARIABLE
4.4 DISCRETE AND CONTINUOUS RANDOM VARIABLES
4.5 STANDARD RANDOM VARIABLES
4.6 FUNCTIONS OF A RANDOM VARIABLE
4.7 EXPECTATION
4.8 GENERATION OF DATA CONSISTENT WITH DEFINED PDF
4.9 VECTOR RANDOM VARIABLES
4.10 PAIRS OF RANDOM VARIABLES
4.11 COVARIANCE AND CORRELATION
4.12 SUMS OF RANDOM VARIABLES
4.13 JOINTLY GAUSSIAN RANDOM VARIABLES
4.14 STIRLING’S FORMULA AND APPROXIMATIONS TO BINOMIAL
4.15 PROBLEMS
APPENDIX 4.A PROOF OF THEOREM 4.6
APPENDIX 4.B PROOF OF THEOREM 4.8
APPENDIX 4.C PROOF OF THEOREM 4.9
APPENDIX 4.D PROOF OF THEOREM 4.21
APPENDIX 4.E PROOF OF STIRLING’S FORMULA
APPENDIX 4.F PROOF OF THEOREM 4.27
APPENDIX 4.G PROOF OF THEOREM 4.29
5 INTRODUCTION TO RANDOM PROCESSES
5.1 RANDOM PROCESSES
5.2 DEFINITION OF A RANDOM PROCESS
5.3 EXAMPLES OF RANDOM PROCESSES
5.4 EXPERIMENTS AND EXPERIMENTAL OUTCOMES
5.5 PROTOTYPICAL EXPERIMENTS
5.6 RANDOM VARIABLES DEFINED BY A RANDOM PROCESS
5.7 CLASSIFICATION OF RANDOM PROCESSES
5.8 CLASSIFICATION: ONE-DIMENSIONAL RPs
5.9 SUMS OF RANDOM PROCESSES
5.10 PROBLEMS
6 PROTOTYPICAL RANDOM PROCESSES
6.1 INTRODUCTION
6.2 BERNOULLI RANDOM PROCESSES
6.3 POISSON RANDOM PROCESSES
6.4 CLUSTERED RANDOM PROCESSES
6.5 SIGNALLING RANDOM PROCESSES
6.6 JITTER
6.7 WHITE NOISE
6.8 1/
f
NOISE
6.9 BIRTH–DEATH RANDOM PROCESSES
6.10 ORTHOGONAL INCREMENT RANDOM PROCESSES
6.11 LINEAR FILTERING OF RANDOM PROCESSES
6.12 SUMMARY OF RANDOM PROCESSES
6.13 PROBLEMS
APPENDIX 6.A PROOF OF THEOREM 6.4
7 CHARACTERIZING RANDOM PROCESSES
7.1 INTRODUCTION
7.2 TIME EVOLUTION OF PMF OR PDF
7.3 FIRST-, SECOND-, AND HIGHER-ORDER CHARACTERIZATION
7.4 AUTOCORRELATION AND POWER SPECTRAL DENSITY
7.5 CORRELATION
7.6 NOTES ON AVERAGE POWER AND AVERAGE ENERGY
7.7 CLASSIFICATION: STATIONARITY VS NON-STATIONARITY
7.8 CRAMER’S REPRESENTATION
7.9 STATE SPACE CHARACTERIZATION of Random Processes
7.10 TIME SERIES CHARACTERIZATION
7.11 PROBLEMS
APPENDIX 7.A PROOF OF THEOREM 7.2
APPENDIX 7.B PROOF OF THEOREMS 7.3 AND 7.4
APPENDIX 7.C PROOF OF THEOREM 7.5
APPENDIX 7.D PROOF OF THEOREM 7.6
APPENDIX 7.E PROOF OF THEOREM 7.11
APPENDIX 7.F PROOF OF THEOREM 7.12
APPENDIX 7.G PROOF OF THEOREM 7.16
APPENDIX 7.H PROOF OF THEOREM 7.17
APPENDIX 7.I PROOF OF THEOREM 7.18
APPENDIX 7.J PROOF OF THEOREM 7.20
APPENDIX 7.K PROOF OF THEOREM 7.21
APPENDIX 7.L PROOF OF THEOREM 7.23
APPENDIX 7.M PROOF OF THEOREM 7.24
8 PMF AND PDF EVOLUTION
8.1 INTRODUCTION
8.2 PROBABILITY MASS/DENSITY FUNCTION ESTIMATION
8.3 NON/SEMI-PARAMETRIC PDF ESTIMATION
8.4 PMF/PDF EVOLUTION: SIGNAL PLUS NOISE
8.5 PMF EVOLUTION OF A RANDOM WALK
8.6 PDF EVOLUTION: BROWNIAN MOTION
8.7 PDF EVOLUTION: SIGNALLING RANDOM PROCESS
8.8 PDF EVOLUTION: GENERALIZED SHOT NOISE
8.9 PDF EVOLUTION: SWITCHING IN A CMOS INVERTER
8.10 PDF EVOLUTION: GENERAL CASE
8.11 PROBLEMS
APPENDIX 8.A PROOF OF THEOREM 8.1
APPENDIX 8.B PROOF OF THEOREM 8.5
APPENDIX 8.C PROOF OF THEOREM 8.11
APPENDIX 8.D PROOF OF THEOREM 8.12
9 THE AUTOCORRELATION FUNCTION
9.1 INTRODUCTION
9.2 NOTATION AND DEFINITIONS
9.3 BASIC RESULTS AND INDEPENDENCE INFORMATION
9.4 SINUSOID WITH RANDOM AMPLITUDE AND PHASE
9.5 RANDOM TELEGRAPH SIGNAL
9.6 GENERALIZED SHOT NOISE
9.7 SIGNALLING RANDOM PROCESS-FIXED PULSE CASE
9.8 GENERALIZED SIGNALLING RANDOM PROCESS
9.9 AUTOCORRELATION: JITTERED RANDOM PROCESSES
9.10 RANDOM WALK
9.11 PROBLEMS
APPENDIX 9.A PROOF OF THEOREM 9.6
APPENDIX 9.B PROOF OF THEOREM 9.7
APPENDIX 9.C PROOF OF THEOREMS 9.8 AND 9.9
APPENDIX 9.D PROOF OF THEOREM 9.12
APPENDIX 9.E PROOF OF THEOREM 9.16
APPENDIX 9.F PROOF OF THEOREM 9.17
APPENDIX 9.G PROOF OF THEOREM 9.19
APPENDIX 9.H PROOF OF THEOREM 9.20
10 POWER SPECTRAL DENSITY THEORY
10.1 INTRODUCTION
10.2 POWER SPECTRAL DENSITY THEORY
10.3 POWER SPECTRAL DENSITY OF A PERIODIC PULSE TRAIN
10.4 PSD OF A SIGNALLING RANDOM PROCESS
10.5 DIGITAL TO ANALOGUE CONVERSION
10.6 PSD OF SHOT NOISE RANDOM PROCESSES
10.7 WHITE NOISE
10.8 1/
f
NOISE
10.9 PSD OF A JITTERED BINARY RANDOM PROCESS
10.10 PSD OF A JITTERED PULSE TRAIN
10.11 PROBLEMS
APPENDIX 10.A PROOF OF THEOREM 10.1
APPENDIX 10.B PROOF OF THEOREM 10.2
APPENDIX 10.C PROOF OF THEOREM 10.3
APPENDIX 10.D PROOF OF THEOREM 10.5
APPENDIX 10.E PROOF OF THEOREM 10.6
APPENDIX 10.F PROOF OF THEOREM 10.7
APPENDIX 10.G PROOF OF THEOREM 10.8
APPENDIX 10.H PROOF OF THEOREM 10.10
APPENDIX 10.I PROOF OF THEOREM 10.13
APPENDIX 10.J PROOF OF THEOREM 10.15
11 ORDER STATISTICS
11.1 INTRODUCTION
11.2 ORDERED RANDOM VARIABLE THEORY
11.3 IDENTICAL RVs WITH UNIFORM DISTRIBUTION
11.4 UNIFORM DISTRIBUTION AND INFINITE INTERVAL
11.5 PROBLEMS
APPENDIX 11.A PROOF OF THEOREM 11.1
APPENDIX 11.B PROOF OF THEOREM 11.4
APPENDIX 11.C PROOF OF THEOREM 11.5
APPENDIX 11.D PROOF OF THEOREM 11.6
APPENDIX 11.E PROOF OF THEOREMS 11.8 AND 11.9
Appendix 11.F PROOF OF THEOREM 11.10
Appendix 11.G PROOF: MARGINAL PDF FROM JOINT PDF
APPENDIX 11.H PROOF OF THEOREM 11.12
APPENDIX 11.I PROOF OF THEOREM 11.13
APPENDIX 11.J PROOF OF THEOREM 11.15
APPENDIX 11.K PROOF OF THEOREM 11.16
APPENDIX 11.L PROOF OF THEOREM 11.18
APPENDIX 11.M PROOF OF THEOREM 11.20
APPENDIX 11.N PROOF OF THEOREM 11.24
APPENDIX 11.O PROOF OF THEOREM 11.25
APPENDIX 11.P PROOF OF THEOREM 11.26
APPENDIX 11.Q PROOF OF THEOREM 11.25
APPENDIX 11.R PROOF OF THEOREM 11.28
APPENDIX 11.S PROOF OF THEOREM 11.29
APPENDIX 11.T PROOF OF THEOREM 11.31
APPENDIX 11.U PROOF OF THEOREM 11.36
12 POISSON POINT RANDOM PROCESSES
12.1 INTRODUCTION
12.2 CHARACTERIZING POISSON RANDOM PROCESSES
12.3 PMF: NUMBER OF POINTS IN A SUBSET OF AN INTERVAL
12.4 RESULTS FROM ORDER STATISTICS
12.5 ALTERNATIVE CHARACTERIZATION FOR INFINITE INTERVAL
12.6 MODELLING WITH UNORDERED OR ORDERED TIMES
12.7 ZERO CROSSING TIMES OF RANDOM TELEGRAPH SIGNAL
12.8 POINT PROCESSES: THE GENERAL CASE
12.9 PROBLEMS
APPENDIX 12.A PROOF OF THEOREM 12.5
APPENDIX 12.B PROOF OF THEOREM 12.6
APPENDIX 12.C PROOF OF THEOREM 12.9
APPENDIX 12.D PROOF OF THEOREM 12.12
APPENDIX 12.E PROOF OF THEOREM 12.16
APPENDIX 12.F PROOF OF THEOREM 12.18
APPENDIX 12.G PROOF OF THEOREM 12.19
APPENDIX 12.H EQUIVALENCE: ORDERED–UNORDERED TIMES
13 BIRTH–DEATH RANDOM PROCESSES
13.1 INTRODUCTION
13.2 DEFINING AND CHARACTERIZING BIRTH–DEATH PROCESSES
13.3 CONSTANT BIRTH RATE, ZERO DEATH RATE PROCESS
13.4 STATE DEPENDENT BIRTH RATE - ZERO DEATH RATE
13.5 CONSTANT DEATH RATE, ZERO BIRTH RATE, PROCESS
13.6 CONSTANT BIRTH AND CONSTANT DEATH RATE PROCESS
13.7 PROBLEMS
APPENDIX 13.A PROOF OF THEOREM 13.1
APPENDIX 13.B PROOF OF THEOREM 13.2
APPENDIX 13.C PROOF OF THEOREM 13.5
APPENDIX 13.D PROOF OF THEOREM 13.8
APPENDIX 13.E PROOF OF THEOREM 13.9
14 THE FIRST PASSAGE TIME
14.1 INTRODUCTION
14.2 FIRST PASSAGE TIME
14.3 APPROACHES: ESTABLISHING THE FIRST PASSAGE TIME
14.4 MAXIMUM LEVEL AND THE FIRST PASSAGE TIME
14.5 SOLUTIONS FOR THE First Passage TIME PDF
14.6 PROBLEMS
APPENDIX 14.A PROOF OF THEOREM 14.3
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
