Adaptive Filters - Ali H. Sayed - E-Book

Adaptive Filters E-Book

Ali H. Sayed

0,0
154,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. This book enables readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts?each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB solutions.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1432

Veröffentlichungsjahr: 2011

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Preface

AREA OF STUDY

STRUCTURE OF THE BOOK

COVERAGE AND TOPICS

DEPENDENCIES AMONG THE CORE PARTS

AUDIENCE

SOME FEATURES OF OUR TREATMENT

Notation

NOTATION

SYMBOLS

BACKGROUND MATERIAL

CHAPTER A: Random Variables

A.1 VARIANCE OF A RANDOM VARIABLE

A.2 DEPENDENT RANDOM VARIABLES

A.3 COMPLEX-VALUED RANDOM VARIABLES

A.4 VECTOR-VALUED RANDOM VARIABLES

A.5 GAUSSIAN RANDOM VECTORS

CHAPTER B: Linear Algebra

B.1 HERMITIAN AND POSITIVE-DEFINITE MATRICES

B.2 RANGE SPACES AND NULLSPACES OF MATRICES

B.3 SCHUR COMPLEMENTS

B.4 CHOLESKY FACTORIZATION

B.5 QR DECOMPOSITION

B.6 SINGULAR VALUE DECOMPOSITION

B.7 KRONECKER PRODUCTS

CHAPTER C: Complex Gradients

C.1 CAUCHY-RIEMANN CONDITIONS

C.2 SCALAR ARGUMENTS

C.3 VECTOR ARGUMENTS

PART I: OPTIMAL ESTIMATION

CHAPTER 1: Scalar-Valued Data

1.1 ESTIMATION WITHOUT OBSERVATIONS

1.2 ESTIMATION GIVEN DEPENDENT OBSERVATIONS

1.3 ORTHOGONALITY PRINCIPLE

1.4 GAUSSIAN RANDOM VARIABLES

CHAPTER 2: Vector-Valued Data

2.1 OPTIMAL ESTIMATOR IN THE VECTOR CASE

2.2 SPHERICALLY INVARIANT GAUSSIAN VARIABLES

2.3 EQUIVALENT OPTIMIZATION CRITERION

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECT

PART II: LINEAR ESTIMATION

CHAPTER 3: NORMAL EQUATIONS

3.1 MEAN-SQUARE ERROR CRITERION

3.2 MINIMIZATION BY DIFFERENTIATION

3.3 MINIMIZATION BY COMPLETION OF SQUARES

3.4 MINIMIZATION OF THE ERROR COVARIANCE MATRIX

3.5 OPTIMAL LINEAR ESTIMATOR

CHAPTER 4: Orthogonality Principle

4.1 DESIGN EXAMPLES

4.2 ORTHOGONALITY CONDITION

4.3 EXISTENCE OF SOLUTIONS

4.4 NONZERO-MEAN VARIABLES

CHAPTER 5: Linear Models

5.1 ESTIMATION USING LINEAR RELATIONS

5.2 APPLICATION: CHANNEL ESTIMATION

5.3 APPLICATION: BLOCK DATA ESTIMATION

5.4 APPLICATION: LINEAR CHANNEL EQUALIZATION

5.5 APPLICATION: MULTIPLE-ANTENNA RECEIVERS

CHAPTER 6: Constrained Estimation

6.1 MINIMUM-VARIANCE UNBIASED ESTIMATION

6.2 EXAMPLE: MEAN ESTIMATION

6.3 APPLICATION: CHANNEL AND NOISE ESTIMATION

6.4 APPLICATION: DECISION FEEDBACK EQUALIZATION

6.5 APPLICATION: ANTENNA BEAMFORMING

CHAPTER 7: Kalman Filter

7.1 INNOVATIONS PROCESS

7.2 STATE-SPACE MODEL

7.3 RECURSION FOR THE STATE ESTIMATOR

7.4 COMPUTING THE GAIN MATRIX

7.5 RICCATI RECURSION

7.6 COVARIANCE FORM

7.7 MEASUREMENT AND TIME-UPDATE FORM

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECTS OJECTS

PART III: STOCHASTIC GRADIENT ALGORITHMS

CHAPTER 8: Steepest–Descent Technique

8.1 LINEAR ESTIMATION PROBLEM

8.2 STEEPEST-DESCENT METHOD

8.3 MORE GENERAL COST FUNCTIONS

CHAPTER 9: Transient Behavior

9.1 MODES OF CONVERGENCE

9.2 OPTIMAL STEP-SIZE

9.3 WEIGHT-ERROR VECTOR CONVERGENCE

9.4 TIME CONSTANTS

9.5 LEARNING CURVE

9.6 CONTOUR CURVES OF THE ERROR SURFACE

9.7 ITERATION-DEPENDENT STEP-SIZES

9.8 NEWTON’S METHOD

CHAPTER 10: LMS Algorithm

10.1 MOTIVATION

10.2 INSTANTANEOUS APPROXIMATION

10.3 COMPUTATIONAL COST

10.4 LEAST-PERTURBATION PROPERTY

10.5 APPLICATION: ADAPTIVE CHANNEL ESTIMATION

10.6 APPLICATION: ADAPTIVE CHANNEL EQUALIZATION

10.7 APPLICATION: DECISION-FEEDBACK EQUALIZATION

10.8 ENSEMBLE-AVERAGE LEARNING CURVES

CHAPTER 11: Normalized LMS Algorithm

11.1 INSTANTANEOUS APPROXIMATION

11.2 COMPUTATIONAL COST

11.3 POWER NORMALIZATION

11.4 LEAST-PERTURBATION PROPERTY

CHAPTER 12: Other LMS-Type Algorithms

12.1 NON-BLIND ALGORITHMS

12.2 BLIND ALGORITHMS

12.3 SOME PROPERTIES

CHAPTER 13: Affine Projection Algorithm

13.1 INSTANTANEOUS APPROXIMATION

13.2 COMPUTATIONAL COST

13.3 LEAST-PERTURBATION PROPERTY

13.4 AFFINE PROJECTION INTERPRETATION

CHAPTER 14: RLS Algorithm

14.1 INSTANTANEOUS APPROXIMATION

14.2 COMPUTATIONAL COST

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECTS OJECTS

PART IV: MEAN-SQUARE PERFORMANCE

CHAPTER 15: Energy Conservation

15.1 PERFORMANCE MEASURE

15.2 STATIONARY DATA MODEL

15.3 ENERGY CONSERVATION RELATION

15.4 VARIANCE RELATION

15.A APPENDIX: ENERGY RELATION INTERPRETATIONS

CHAPTER 16: Performance of LMS

16.1 VARIANCE RELATION

16.2 SMALL STEP-SIZES

16.3 SEPARATION PRINCIPLE

16.4 WHITE GAUSSIAN INPUT

16.5 STATEMENT OF RESULTS

16.6 SIMULATION RESULTS

CHAPTER 17: Performance of NLMS

17.1 SEPARATION PRINCIPLE

17.2 SIMULATION RESULTS

17.A APPENDIX: RELATING NLMS TO LMS

CHAPTER 18: Performance of Sign-Error LMS

18.1 REAL-VALUED DATA

18.2 COMPLEX-VALUED DATA

18.3 SIMULATION RESULTS

CHAPTER 19: Performance of RLS and Other Filters

19.1 PERFORMANCE OF RLS

19.2 PERFORMANCE OF OTHER FILTERS

19.3 PERFORMANCE TABLE FOR SMALL STEP-SIZES

CHAPTER 20: Nonstationary Environments

20.1 MOTIVATION

20.2 NONSTATIONARY DATA MODEL

20.3 ENERGY CONSERVATION RELATION

20.4 VARIANCE RELATION

CHAPTER 21: Tracking Performance

21.1 PERFORMANCE OF LMS

21.2 PERFORMANCE OF NLMS

21.3 PERFORMANCE OF SIGN-ERROR LMS

21.4 PERFORMANCE OF RLS

21.5 COMPARISON OF TRACKING PERFORMANCE

21.6 COMPARING RLS AND LMS

21.7 PERFORMANCE OF OTHER FILTERS

21.8 PERFORMANCE TABLE FOR SMALL STEP-SIZES

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECTS

PART V: TRANSIENT PERFORMANCE

CHAPTER 22: Weighted Energy Conservation

22.1 DATA MODEL

22.2 DATA-NORMALIZED ADAPTIVE FILTERS

22.3 WEIGHTED ENERGY CONSERVATION RELATION

22.4 WEIGHTED VARIANCE RELATION

CHAPTER 23: LMS with Gaussian Regressors

23.1 MEAN AND VARIANCE RELATIONS

23.2 MEAN BEHAVIOR

23.3 MEAN-SQUARE BEHAVIOR

23.4 MEAN-SQUARE STABILITY

23.5 STEADY-STATE PERFORMANCE

23.6 SMALL STEP-SIZE APPROXIMATIONS

23.A APPENDIX: CONVERGENCE TIME

CHAPTER 24: LMS with non-Gaussian Regressors

24.1 MEAN AND VARIANCE RELATIONS

24.2 MEAN-SQUARE STABILITY AND PERFORMANCE

24.3 SMALL STEP-SIZE APPROXIMATIONS

24.A APPENDIX: AVERAGING ANALYSIS

CHAPTER 25: Data-Normalized Filters

25.1 NLMS FILTER

25.2 DATA-NORMALIZED FILTERS

25.A APPENDIX: STABILITY BOUND

25.B APPENDIX: STABILITY OF NLMS

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECT

PART VI: BLOCK ADAPTIVE FILTERS

CHAPTER 26: Transform Domain Adaptive Filters

26.1 TRANSFORM-DOMAIN FILTERS

26.2 DFT-DOMAIN LMS

26.3 DCT-DOMAIN LMS

26.A APPENDIX: DCT-TRANSFORMED REGRESSORS

CHAPTER 27: Efficient Block Convolution

27.1 MOTIVATION

27.2 BLOCK DATA FORMULATION

27.3 BLOCK CONVOLUTION

CHAPTER 28: Block and Subband Adaptive Filters

28.1 DFT BLOCK ADAPTIVE FILTERS

28.2 SUBBAND ADAPTIVE FILTERS

28.A APPENDIX: ANOTHER CONSTRAINED FILTER

28.B APPENDIX: OVERLAP-ADD BLOCK ADAPTIVE FILTERS

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECT

PART VII: LEAST-SQUARES METHODS

CHAPTER 29: Least-Squares Criterion

29.1 LEAST-SQUARES PROBLEM

29.2 GEOMETRIC ARGUMENT

29.3 ALGEBRAIC ARGUMENTS

29.4 PROPERTIES OF LEAST-SQUARES SOLUTION

29.5 PROJECTION MATRICES

29.6 WEIGHTED LEAST-SQUARES

29.7 REGULARIZED LEAST-SQUARES

29.8 WEIGHTED REGULARIZED LEAST-SQUARES

CHAPTER 30: Recursive Least-Squares

30.1 MOTIVATION

30.2 RLS ALGORITHM

30.3 REGULARIZATION

30.4 CONVERSION FACTOR

30.5 TIME-UPDATE OF THE MINIMUM COST

30.6 EXPONENTIALLY-WEIGHTED RLS ALGORITHM

CHAPTER 31: Kalman Filtering and RLS

31.1 EQUIVALENCE IN LINEAR ESTIMATION

31.2 KALMAN FILTERING AND RECURSIVE LEAST-SQUARES

31.A APPENDIX: EXTENDED RLS ALGORITHMS

CHAPTER 32: Order and Time-Update Relations

32.1 BACKWARD ORDER-UPDATE RELATIONS

32.2 FORWARD ORDER-UPDATE RELATIONS

32.3 TIME-UPDATE RELATION

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECTS

PART VIII: ARRAY ALGORITHMS

CHAPTER 33: Norm and Angle Preservation

33.1 SOME DIFFICULTIES

33.2 SQUARE-ROOT FACTORS

33.3 PRESERVATION PROPERTIES

33,4 MOTIVATION FOR ARRAY METHODS

CHAPTER 34: Unitary Transformations

34.1 GIVENS ROTATIONS

34.2 HOUSEHOLDER TRANSFORMATIONS

CHAPTER 35: QR and Inverse QR Algorithms

35.1 INVERSE QR ALGORITHM

35.2 QR ALGORITHM

35.3 EXTENDED QR ALGORITHM

35.A APPENDIX: ARRAY KALMAN FILTERS

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECT

PART IX: FAST RLS ALGORITHMS

CHAPTER 36: Hyperbolic Rotations

36.1 HYPERBOLIC GIVENS ROTATIONS

36.2 HYPERBOLIC HOUSEHOLDER TRANSFORMATIONS

36.3 HYPERBOLIC BASIS ROTATIONS

CHAPTER 37: Fast Array Algorithm

37.1 TIME-UPDATE OF THE GAIN VECTOR

37.2 TIME-UPDATE OF THE CONVERSION FACTOR

37.3 INITIAL CONDITIONS

37.4 ARRAY ALGORITHM

37.A APPENDIX: CHANDRASEKHAR FILTER

CHAPTER 38: Regularized Prediction Problems

38.1 REGULARIZED BACKWARD PREDICTION

38.2 REGULARIZED FORWARD PREDICTION

38.3 LOW-RANK FACTORIZATION

CHAPTER 39: Fast Fixed-Order Filters

39.1 FAST TRANSVERSAL FILTER

39.2 FAEST FILTER

39.3 FAST KALMAN FILTER

39.4 STABILITY ISSUES

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECT

PART X: LATTICE FILTERS

CHAPTER 40: Three Basic Estimation Problems

40.1 MOTIVATION FOR LATTICE FILTERS

40.2 JOINT PROCESS ESTIMATION

40.3 BACKWARD ESTIMATION PROBLEM

40.4 FORWARD ESTIMATION PROBLEM

40.5 TIME AND ORDER-UPDATE RELATIONS

CHAPTER 41: Lattice Filter Algorithms

41.1 SIGNIFICANCE OF DATA STRUCTURE

41.2 A POSTERIORI-BASED LATTICE FILTER

41.3 A PRIORI-BASED LATTICE FILTER

CHAPTER 42: Error-Feedback Lattice Filters

42.1 A PRIORI ERROR-FEEDBACK LATTICE FILTER

42.2 A POSTERIORI ERROR-FEEDBACK LATTICE FILTER

42.3 NORMALIZED LATTICE FILTER

CHAPTER 43: Array Lattice Filters

43.1 ORDER-UPDATE OF OUTPUT ESTIMATION ERRORS

43.2 ORDER-UPDATE OF BACKWARD ESTIMATION ERRORS

43.3 ORDER-UPDATE OF FORWARD ESTIMATION ERRORS

43.4 SIGNIFICANCE OF DATA STRUCTURE

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECT

PART XI: ROBUST FILTERS

CHAPTER 44: Indefinite Least-Squares

44.1 INDEFINITE LEAST-SQUARES FORMULATION

44.2 RECURSIVE MINIMIZATION ALGORITHM

44.3 TIME-UPDATE OF THE MINIMUM COST

44.4 SINGULAR WEIGHTING MATRICES

44.A APPENDIX: STATIONARY POINTS

44.B APPENDIX: INERTIA CONDITIONS

CHAPTER 45: Robust Adaptive Filters

45.1 A POSTERIORI-BASED ROBUST FILTERS

45.2 -NLMS ALGORITHM

45.3 A PRIORI-BASED ROBUST FILTERS

45.4 LMS ALGORITHM

45.A APPENDIX:

H

FILTERS

CHAPTER 46: Robustness Properties

46.1 ROBUSTNESS OF LMS

46.2 ROBUSTNESS OF ∈-NLMS

46.3 ROBUSTNESS OF RLS

Summary and Notes

SUMMARY OF MAIN RESULTS

BIBLIOGRAPHIC NOTES

Problems and Computer Projects

PROBLEMS

COMPUTER PROJECT

REFERENCES AND INDICES

References

Author Index

Subject Index

End User License Agreement

Guide

Cover

Table of Contents

Begin Reading

Pages

C1

iii

iv

v

vii

xvii

xviii

xix

xx

xxi

xxii

xxiii

xxiv

xxv

xxvi

xxvii

xxviii

xxix

xxx

xxxi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

e1

ADAPTIVE FILTERS

ALI H. SAYED

University of California at Los Angeles

Cover design by Michael Rutkowski.

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978) 750–4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Sayed, Ali H.

Adaptive filters / Ali H. Sayed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-25388-5 (cloth)

1. Adaptive filters. I. Title.

TK7872.F5S285 2008

621.3815’324--dc22

2008003731

To my parents