154,99 €
Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. This book enables readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts?each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB solutions.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1432
Veröffentlichungsjahr: 2011
Cover
Preface
AREA OF STUDY
STRUCTURE OF THE BOOK
COVERAGE AND TOPICS
DEPENDENCIES AMONG THE CORE PARTS
AUDIENCE
SOME FEATURES OF OUR TREATMENT
Notation
NOTATION
SYMBOLS
BACKGROUND MATERIAL
CHAPTER A: Random Variables
A.1 VARIANCE OF A RANDOM VARIABLE
A.2 DEPENDENT RANDOM VARIABLES
A.3 COMPLEX-VALUED RANDOM VARIABLES
A.4 VECTOR-VALUED RANDOM VARIABLES
A.5 GAUSSIAN RANDOM VECTORS
CHAPTER B: Linear Algebra
B.1 HERMITIAN AND POSITIVE-DEFINITE MATRICES
B.2 RANGE SPACES AND NULLSPACES OF MATRICES
B.3 SCHUR COMPLEMENTS
B.4 CHOLESKY FACTORIZATION
B.5 QR DECOMPOSITION
B.6 SINGULAR VALUE DECOMPOSITION
B.7 KRONECKER PRODUCTS
CHAPTER C: Complex Gradients
C.1 CAUCHY-RIEMANN CONDITIONS
C.2 SCALAR ARGUMENTS
C.3 VECTOR ARGUMENTS
PART I: OPTIMAL ESTIMATION
CHAPTER 1: Scalar-Valued Data
1.1 ESTIMATION WITHOUT OBSERVATIONS
1.2 ESTIMATION GIVEN DEPENDENT OBSERVATIONS
1.3 ORTHOGONALITY PRINCIPLE
1.4 GAUSSIAN RANDOM VARIABLES
CHAPTER 2: Vector-Valued Data
2.1 OPTIMAL ESTIMATOR IN THE VECTOR CASE
2.2 SPHERICALLY INVARIANT GAUSSIAN VARIABLES
2.3 EQUIVALENT OPTIMIZATION CRITERION
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECT
PART II: LINEAR ESTIMATION
CHAPTER 3: NORMAL EQUATIONS
3.1 MEAN-SQUARE ERROR CRITERION
3.2 MINIMIZATION BY DIFFERENTIATION
3.3 MINIMIZATION BY COMPLETION OF SQUARES
3.4 MINIMIZATION OF THE ERROR COVARIANCE MATRIX
3.5 OPTIMAL LINEAR ESTIMATOR
CHAPTER 4: Orthogonality Principle
4.1 DESIGN EXAMPLES
4.2 ORTHOGONALITY CONDITION
4.3 EXISTENCE OF SOLUTIONS
4.4 NONZERO-MEAN VARIABLES
CHAPTER 5: Linear Models
5.1 ESTIMATION USING LINEAR RELATIONS
5.2 APPLICATION: CHANNEL ESTIMATION
5.3 APPLICATION: BLOCK DATA ESTIMATION
5.4 APPLICATION: LINEAR CHANNEL EQUALIZATION
5.5 APPLICATION: MULTIPLE-ANTENNA RECEIVERS
CHAPTER 6: Constrained Estimation
6.1 MINIMUM-VARIANCE UNBIASED ESTIMATION
6.2 EXAMPLE: MEAN ESTIMATION
6.3 APPLICATION: CHANNEL AND NOISE ESTIMATION
6.4 APPLICATION: DECISION FEEDBACK EQUALIZATION
6.5 APPLICATION: ANTENNA BEAMFORMING
CHAPTER 7: Kalman Filter
7.1 INNOVATIONS PROCESS
7.2 STATE-SPACE MODEL
7.3 RECURSION FOR THE STATE ESTIMATOR
7.4 COMPUTING THE GAIN MATRIX
7.5 RICCATI RECURSION
7.6 COVARIANCE FORM
7.7 MEASUREMENT AND TIME-UPDATE FORM
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECTS OJECTS
PART III: STOCHASTIC GRADIENT ALGORITHMS
CHAPTER 8: Steepest–Descent Technique
8.1 LINEAR ESTIMATION PROBLEM
8.2 STEEPEST-DESCENT METHOD
8.3 MORE GENERAL COST FUNCTIONS
CHAPTER 9: Transient Behavior
9.1 MODES OF CONVERGENCE
9.2 OPTIMAL STEP-SIZE
9.3 WEIGHT-ERROR VECTOR CONVERGENCE
9.4 TIME CONSTANTS
9.5 LEARNING CURVE
9.6 CONTOUR CURVES OF THE ERROR SURFACE
9.7 ITERATION-DEPENDENT STEP-SIZES
9.8 NEWTON’S METHOD
CHAPTER 10: LMS Algorithm
10.1 MOTIVATION
10.2 INSTANTANEOUS APPROXIMATION
10.3 COMPUTATIONAL COST
10.4 LEAST-PERTURBATION PROPERTY
10.5 APPLICATION: ADAPTIVE CHANNEL ESTIMATION
10.6 APPLICATION: ADAPTIVE CHANNEL EQUALIZATION
10.7 APPLICATION: DECISION-FEEDBACK EQUALIZATION
10.8 ENSEMBLE-AVERAGE LEARNING CURVES
CHAPTER 11: Normalized LMS Algorithm
11.1 INSTANTANEOUS APPROXIMATION
11.2 COMPUTATIONAL COST
11.3 POWER NORMALIZATION
11.4 LEAST-PERTURBATION PROPERTY
CHAPTER 12: Other LMS-Type Algorithms
12.1 NON-BLIND ALGORITHMS
12.2 BLIND ALGORITHMS
12.3 SOME PROPERTIES
CHAPTER 13: Affine Projection Algorithm
13.1 INSTANTANEOUS APPROXIMATION
13.2 COMPUTATIONAL COST
13.3 LEAST-PERTURBATION PROPERTY
13.4 AFFINE PROJECTION INTERPRETATION
CHAPTER 14: RLS Algorithm
14.1 INSTANTANEOUS APPROXIMATION
14.2 COMPUTATIONAL COST
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECTS OJECTS
PART IV: MEAN-SQUARE PERFORMANCE
CHAPTER 15: Energy Conservation
15.1 PERFORMANCE MEASURE
15.2 STATIONARY DATA MODEL
15.3 ENERGY CONSERVATION RELATION
15.4 VARIANCE RELATION
15.A APPENDIX: ENERGY RELATION INTERPRETATIONS
CHAPTER 16: Performance of LMS
16.1 VARIANCE RELATION
16.2 SMALL STEP-SIZES
16.3 SEPARATION PRINCIPLE
16.4 WHITE GAUSSIAN INPUT
16.5 STATEMENT OF RESULTS
16.6 SIMULATION RESULTS
CHAPTER 17: Performance of NLMS
17.1 SEPARATION PRINCIPLE
17.2 SIMULATION RESULTS
17.A APPENDIX: RELATING NLMS TO LMS
CHAPTER 18: Performance of Sign-Error LMS
18.1 REAL-VALUED DATA
18.2 COMPLEX-VALUED DATA
18.3 SIMULATION RESULTS
CHAPTER 19: Performance of RLS and Other Filters
19.1 PERFORMANCE OF RLS
19.2 PERFORMANCE OF OTHER FILTERS
19.3 PERFORMANCE TABLE FOR SMALL STEP-SIZES
CHAPTER 20: Nonstationary Environments
20.1 MOTIVATION
20.2 NONSTATIONARY DATA MODEL
20.3 ENERGY CONSERVATION RELATION
20.4 VARIANCE RELATION
CHAPTER 21: Tracking Performance
21.1 PERFORMANCE OF LMS
21.2 PERFORMANCE OF NLMS
21.3 PERFORMANCE OF SIGN-ERROR LMS
21.4 PERFORMANCE OF RLS
21.5 COMPARISON OF TRACKING PERFORMANCE
21.6 COMPARING RLS AND LMS
21.7 PERFORMANCE OF OTHER FILTERS
21.8 PERFORMANCE TABLE FOR SMALL STEP-SIZES
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECTS
PART V: TRANSIENT PERFORMANCE
CHAPTER 22: Weighted Energy Conservation
22.1 DATA MODEL
22.2 DATA-NORMALIZED ADAPTIVE FILTERS
22.3 WEIGHTED ENERGY CONSERVATION RELATION
22.4 WEIGHTED VARIANCE RELATION
CHAPTER 23: LMS with Gaussian Regressors
23.1 MEAN AND VARIANCE RELATIONS
23.2 MEAN BEHAVIOR
23.3 MEAN-SQUARE BEHAVIOR
23.4 MEAN-SQUARE STABILITY
23.5 STEADY-STATE PERFORMANCE
23.6 SMALL STEP-SIZE APPROXIMATIONS
23.A APPENDIX: CONVERGENCE TIME
CHAPTER 24: LMS with non-Gaussian Regressors
24.1 MEAN AND VARIANCE RELATIONS
24.2 MEAN-SQUARE STABILITY AND PERFORMANCE
24.3 SMALL STEP-SIZE APPROXIMATIONS
24.A APPENDIX: AVERAGING ANALYSIS
CHAPTER 25: Data-Normalized Filters
25.1 NLMS FILTER
25.2 DATA-NORMALIZED FILTERS
25.A APPENDIX: STABILITY BOUND
25.B APPENDIX: STABILITY OF NLMS
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECT
PART VI: BLOCK ADAPTIVE FILTERS
CHAPTER 26: Transform Domain Adaptive Filters
26.1 TRANSFORM-DOMAIN FILTERS
26.2 DFT-DOMAIN LMS
26.3 DCT-DOMAIN LMS
26.A APPENDIX: DCT-TRANSFORMED REGRESSORS
CHAPTER 27: Efficient Block Convolution
27.1 MOTIVATION
27.2 BLOCK DATA FORMULATION
27.3 BLOCK CONVOLUTION
CHAPTER 28: Block and Subband Adaptive Filters
28.1 DFT BLOCK ADAPTIVE FILTERS
28.2 SUBBAND ADAPTIVE FILTERS
28.A APPENDIX: ANOTHER CONSTRAINED FILTER
28.B APPENDIX: OVERLAP-ADD BLOCK ADAPTIVE FILTERS
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECT
PART VII: LEAST-SQUARES METHODS
CHAPTER 29: Least-Squares Criterion
29.1 LEAST-SQUARES PROBLEM
29.2 GEOMETRIC ARGUMENT
29.3 ALGEBRAIC ARGUMENTS
29.4 PROPERTIES OF LEAST-SQUARES SOLUTION
29.5 PROJECTION MATRICES
29.6 WEIGHTED LEAST-SQUARES
29.7 REGULARIZED LEAST-SQUARES
29.8 WEIGHTED REGULARIZED LEAST-SQUARES
CHAPTER 30: Recursive Least-Squares
30.1 MOTIVATION
30.2 RLS ALGORITHM
30.3 REGULARIZATION
30.4 CONVERSION FACTOR
30.5 TIME-UPDATE OF THE MINIMUM COST
30.6 EXPONENTIALLY-WEIGHTED RLS ALGORITHM
CHAPTER 31: Kalman Filtering and RLS
31.1 EQUIVALENCE IN LINEAR ESTIMATION
31.2 KALMAN FILTERING AND RECURSIVE LEAST-SQUARES
31.A APPENDIX: EXTENDED RLS ALGORITHMS
CHAPTER 32: Order and Time-Update Relations
32.1 BACKWARD ORDER-UPDATE RELATIONS
32.2 FORWARD ORDER-UPDATE RELATIONS
32.3 TIME-UPDATE RELATION
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECTS
PART VIII: ARRAY ALGORITHMS
CHAPTER 33: Norm and Angle Preservation
33.1 SOME DIFFICULTIES
33.2 SQUARE-ROOT FACTORS
33.3 PRESERVATION PROPERTIES
33,4 MOTIVATION FOR ARRAY METHODS
CHAPTER 34: Unitary Transformations
34.1 GIVENS ROTATIONS
34.2 HOUSEHOLDER TRANSFORMATIONS
CHAPTER 35: QR and Inverse QR Algorithms
35.1 INVERSE QR ALGORITHM
35.2 QR ALGORITHM
35.3 EXTENDED QR ALGORITHM
35.A APPENDIX: ARRAY KALMAN FILTERS
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECT
PART IX: FAST RLS ALGORITHMS
CHAPTER 36: Hyperbolic Rotations
36.1 HYPERBOLIC GIVENS ROTATIONS
36.2 HYPERBOLIC HOUSEHOLDER TRANSFORMATIONS
36.3 HYPERBOLIC BASIS ROTATIONS
CHAPTER 37: Fast Array Algorithm
37.1 TIME-UPDATE OF THE GAIN VECTOR
37.2 TIME-UPDATE OF THE CONVERSION FACTOR
37.3 INITIAL CONDITIONS
37.4 ARRAY ALGORITHM
37.A APPENDIX: CHANDRASEKHAR FILTER
CHAPTER 38: Regularized Prediction Problems
38.1 REGULARIZED BACKWARD PREDICTION
38.2 REGULARIZED FORWARD PREDICTION
38.3 LOW-RANK FACTORIZATION
CHAPTER 39: Fast Fixed-Order Filters
39.1 FAST TRANSVERSAL FILTER
39.2 FAEST FILTER
39.3 FAST KALMAN FILTER
39.4 STABILITY ISSUES
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECT
PART X: LATTICE FILTERS
CHAPTER 40: Three Basic Estimation Problems
40.1 MOTIVATION FOR LATTICE FILTERS
40.2 JOINT PROCESS ESTIMATION
40.3 BACKWARD ESTIMATION PROBLEM
40.4 FORWARD ESTIMATION PROBLEM
40.5 TIME AND ORDER-UPDATE RELATIONS
CHAPTER 41: Lattice Filter Algorithms
41.1 SIGNIFICANCE OF DATA STRUCTURE
41.2 A POSTERIORI-BASED LATTICE FILTER
41.3 A PRIORI-BASED LATTICE FILTER
CHAPTER 42: Error-Feedback Lattice Filters
42.1 A PRIORI ERROR-FEEDBACK LATTICE FILTER
42.2 A POSTERIORI ERROR-FEEDBACK LATTICE FILTER
42.3 NORMALIZED LATTICE FILTER
CHAPTER 43: Array Lattice Filters
43.1 ORDER-UPDATE OF OUTPUT ESTIMATION ERRORS
43.2 ORDER-UPDATE OF BACKWARD ESTIMATION ERRORS
43.3 ORDER-UPDATE OF FORWARD ESTIMATION ERRORS
43.4 SIGNIFICANCE OF DATA STRUCTURE
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECT
PART XI: ROBUST FILTERS
CHAPTER 44: Indefinite Least-Squares
44.1 INDEFINITE LEAST-SQUARES FORMULATION
44.2 RECURSIVE MINIMIZATION ALGORITHM
44.3 TIME-UPDATE OF THE MINIMUM COST
44.4 SINGULAR WEIGHTING MATRICES
44.A APPENDIX: STATIONARY POINTS
44.B APPENDIX: INERTIA CONDITIONS
CHAPTER 45: Robust Adaptive Filters
45.1 A POSTERIORI-BASED ROBUST FILTERS
45.2 -NLMS ALGORITHM
45.3 A PRIORI-BASED ROBUST FILTERS
45.4 LMS ALGORITHM
45.A APPENDIX:
H
∞
FILTERS
CHAPTER 46: Robustness Properties
46.1 ROBUSTNESS OF LMS
46.2 ROBUSTNESS OF ∈-NLMS
46.3 ROBUSTNESS OF RLS
Summary and Notes
SUMMARY OF MAIN RESULTS
BIBLIOGRAPHIC NOTES
Problems and Computer Projects
PROBLEMS
COMPUTER PROJECT
REFERENCES AND INDICES
References
Author Index
Subject Index
End User License Agreement
Cover
Table of Contents
Begin Reading
C1
iii
iv
v
vii
xvii
xviii
xix
xx
xxi
xxii
xxiii
xxiv
xxv
xxvi
xxvii
xxviii
xxix
xxx
xxxi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
e1
ALI H. SAYED
University of California at Los Angeles
Cover design by Michael Rutkowski.
Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved
Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978) 750–4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.
Library of Congress Cataloging-in-Publication Data:
Sayed, Ali H.
Adaptive filters / Ali H. Sayed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-25388-5 (cloth)
1. Adaptive filters. I. Title.
TK7872.F5S285 2008
621.3815’324--dc22
2008003731
To my parents
