Albert Einstein: navegante solitario - Luis de la Peña - E-Book

Albert Einstein: navegante solitario E-Book

Luis de la Pena

0,0
2,49 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Luis de la Peña habla aquí de Einstein, de su obra, de su tiempo, y explica con claridad las aportaciones del sabio al mundo de la física. Esta investigación está dirigida a aquellas personas que por sus ocupaciones no han tenido oportunidad de asomarse al campo de la física pero están interesadas en ella.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 173

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Albert Einstein:Navegante solitario

Luis de la Peña

Primera edición (La Ciencia desde México), 1987 Segunda edición (La Ciencia para Todos), 1998 Tercera edición, 2003 Primera edición electrónica, 2010

La Ciencia para Todos es proyecto y propiedad del Fondo de Cultura Económica, al que pertenecen también sus derechos. Se publica con los auspicios de la Secretaría de Educación Pública y del Consejo Nacional de Ciencia y Tecnología.

D. R. © 1987, Fondo de Cultura Económica Carretera Picacho-Ajusco, 227; 14738 México, D. F. Empresa certificada ISO 9001:2008

Comentarios: [email protected] Tel. (55) 5227-4672

Se prohíbe la reproducción total o parcial de esta obra, sea cual fuere el medio. Todos los contenidos que se incluyen tales como características tipográficas y de diagramación, textos, gráficos, logotipos, iconos, imágenes, etc. son propiedad exclusiva del Fondo de Cultura Económica y están protegidos por las leyes mexicana e internacionales del copyright o derecho de autor.

ISBN 978-607-16-0343-2

Hecho en México - Made in Mexico

La Ciencia para Todos

Desde el nacimiento de la colección de divulgación científica del Fondo de Cultura Económica en 1986, ésta ha mantenido un ritmo siempre ascendente que ha superado las aspiraciones de las personas e instituciones que la hicieron posible. Los científicos siempre han aportado material, con lo que han sumado a su trabajo la incursión en un campo nuevo: escribir de modo que los temas más complejos y casi inaccesibles puedan ser entendidos por los estudiantes y los lectores sin formación científica.

A los diez años de este fructífero trabajo se dio un paso adelante, que consistió en abrir la colección a los creadores de la ciencia que se piensa y crea en todos los ámbitos de la lengua española —y ahora también del portugués—, razón por la cual tomó el nombre de La Ciencia para Todos.

Del Río Bravo al Cabo de Hornos y, a través de la mar Océano, a la Península Ibérica, está en marcha un ejército integrado por un vasto número de investigadores, científicos y técnicos, que extienden sus actividades por todos los campos de la ciencia moderna, disciplina que se encuentra en plena revolución y que continuamente va cambiando nuestra forma de pensar y observar cuanto nos rodea.

La internacionalización de La Ciencia para Todos no es sólo en extensión sino en profundidad. Es necesario pensar una ciencia en nuestros idiomas que, de acuerdo con nuestra tradición humanista, crezca sin olvidar al hombre, que es, en última instancia, su fin. Y, en consecuencia, su propósito principal es poner el pensamiento científico en manos de nuestros jóvenes, quienes, al llegar su turno, crearán una ciencia que, sin desdeñar a ninguna otra, lleve la impronta de nuestros pueblos.

Comité de Selección

Dr. Antonio Alonso Dr. Francisco Bolívar Zapata Dr. Javier Bracho Dr. Juan Luis Cifuentes Dra. Rosalinda Contreras Dra. Julieta Fierro Dr. Jorge Flores Valdés Dr. Juan Ramón de la Fuente Dr. Leopoldo García-Colín Scherer Dr. Adolfo Guzmán Arenas Dr. Gonzalo Halffter Dr. Jaime Martuscelli Dra. Isaura Meza Dr. José Luis Morán López Dr. Héctor Nava Jaimes Dr. Manuel Peimbert Dr. José Antonio de la Peña Dr. Ruy Pérez Tamayo Dr. Julio Rubio Oca Dr. José Sarukhán Dr. Guillermo Soberón Dr. Elias Trabulse

Soy de verdad un “viajero solitario”…

A. Einstein

Introducción

Limitar los conocimientos científicos a un reducido número de personas debilita el espíritu filosófico de un pueblo y conduce a su debilidad espiritual.

A. Einstein

En este libro se habla de Einstein, de su obra, de su tiempo. Es un libro escrito para aquellas personas que por su edad o sus ocupaciones no han tenido oportunidad de estudiar la ciencias, pero están interesadas en saber algo de ellas. Es un libro sencillo, sobre una de las personalidades más grandes que ha dado la humanidad, que tiene como intención ayudar a entender un poco de lo que hizo este gran hombre sin exigir que se lean páginas y más páginas de física.

La vida de Einstein fue muy rica y se dio en una época llena de acontecimientos históricos: aun sin proponérselo, su inmensa fama lo vinculaba con todo lo que pasaba a su alrededor. En el curso de su vida —y en buena parte debido a su obra— la física se transformó radicalmente —sería legítimo hablar de una física preeinsteiniana y de una física posteinsteiniana—; antes de cumplir 30 años había ya hecho descubrimientos y propuesto teorías sorprendentes y revolucionarias que van mucho más allá de la teoría de la relatividad —que es indudablemente la más famosa de sus aportaciones—. Este hombre, cubierto de gloria en vida como ningún otro científico jamás lo ha sido, se supo mantener sencillo, modesto y solitario y, sin ser un revolucionario en el sentido social del término, usó su fama y su prestigio para luchar contra la tiranía, la injusticia y la explotación, contra el militarismo y el armamentismo y por la cooperación internacional y los derechos del pueblo judío.

Este pequeño libro ayuda al lector a saber un poco de todo esto; a aproximarse a su visión racional, objetiva y progresista del mundo; a conocer de cerca su profunda necesidad de plena libertad intelectual y, en fin, a asomarse a la obra científica de Einstein para encontrarlo de joven proponiendo teorías audaces, inesperadas y revolucionarias y reencontrarlo, ya de viejo, pero tan solo como antes lo estuvo, tratando de convencer de que las nuevas teorías que todos admiran son insuficientes e inadecuadas. Pensador profundo e incansable, nos dejó una enorme herencia intelectual y moral; conocerla nos acerca a lo mejor que el espíritu humano puede dar.

I. El joven Einstein

Yo hacía lo que me dictaba mi propia naturaleza.

A. Einstein

Una pregunta original

—A ver: vamos a verlo con más cuidado —se decía el joven pensativo—. Supongamos que puedo correr tan rápido como se me antojara. Supongamos que corro tan rápido, que al encender mi lámpara sorda me muevo junto con la luz que sale de ella, exactamente a su velocidad. Luz y yo viajamos juntos. ¿Qué es lo que veo? ¿Cómo se ve la luz cuando viaja uno junto con ella?

Si el lector sabe la respuesta o siente que la puede dar después de pensarlo un poquito (la pregunta es realmente inesperada y no es de extrañar que lo ponga a pensar), se puede saltar un par de párrafos con entera libertad. La luz viaja con una velocidad increíble, fantástica: 300 millones de metros cada segundo. Esto significa que para viajar un millón de kilómetros, un haz de luz requiere tan sólo de poco más de 3 segundos; éste es aproximadamente el tiempo que usamos para leer la última frase (la del millón de kilómetros), y en ese ratito algún rayo de luz viajó cosa de un millón de kilómetros en algún lugar del Cosmos.

Por qué la luz viaja en el vacío a esta velocidad y no a otra es uno de tantos misterios de la física contemporánea. La velocidad de la luz es un dato experimental y constituye una de las constantes fundamentales de la física, no calculable mediante teoría física alguna. Su valor nos parece fantástico, pero podemos decir que, en alguna forma al menos, está ajustado a la vez a la escala humana y a la cósmica. Por ejemplo, la luz que la Luna nos refleja nos llega en tan sólo 3 segundos, y la directa del Sol tarda apenas 8 minutos en alcanzarnos. Pero para hablar de las distancias entre las estrellas, los astrónomos usan como patrón ¡la distancia que la luz recorre en un año! ¿Podrían ustedes representarse esta distancia?

Pero, ¿por qué siempre se habla de que la luz viaja a tal velocidad? ¿Qué la luz no se puede estar quieta? No: precisamente, no. La luz, si existe, viaja; y sólo si viaja, existe. Es como las olas del mar; ¿alguien ha visto una ola quieta en el mar? Y aunque el ejemplo de las olas no es de todo correcto, sí nos permite sentir un poco porque la luz sólo existe en movimiento; como las olas, como el sonido, la luz es también una onda que para existir tiene que propagarse, que viajar. Pero a diferencia de las olas o del sonido, que son ondas mecánicas, es decir, vibraciones o desplazamientos de ida y vuelta de las moléculas de las sustancias, la luz es una onda electromagnética. Esto quiere decir que la luz es una onda semejante a las de radio, o a los rayos X. Todas estas ondas son fenómenos muy complejos, combinación de efectos eléctricos y magnéticos simultáneamente, que se pueden dar tanto en los materiales como en el vacío y que podemos imaginarnos como vibraciones eléctricas y magnéticas simultáneamente, en tal forma que unas producen las otras y viceversa y así indefinidamente.

Lo importante aquí es que una onda electromagnética es imparable, o, más bien, que si se le detiene desaparece.[1] Por ejemplo, cuando la luz cae sobre un cuerpo negro que la absorbe totalmente, simplemente desaparece como luz; su energía queda atrapada en el cuerpo que la absorbe, pero no hay más luz.

La teoría de los fenómenos de este tipo es la llamada teoría electromagnética y fue creada hace ya más de cien años. El físico escocés James Clerk Maxwell (1831-1879) fue quien dio a esta teoría básicamente la forma que tiene hoy; fue el primero en entender que existen las ondas electromagnéticas, que la luz es una de ellas y que todas estas ondas viajan con la misma velocidad en el vacío; con todas estas observaciones abrió el camino para la invención poco tiempo después del radio y las radiocomunicaciones y para la creación de una nueva teoría de la óptica, la óptica física. Por todo esto y otros resultados muy importantes, a Maxwell se le considera justamente una de las grandes luminarias de la física. La teoría electromagnética nos muestra en forma concluyente que una onda electromagnética no existe en reposo. Pero sobre estas cosas hablaremos más adelante.

Una respuesta aún más original

Regresemos ahora al problema que se planteaba el joven, quien se preguntaba qué pasaría si suponemos —como es lícito hacer según la mecánica de Newton— que corremos lado a lado de un haz luminoso con la velocidad de la luz. Como el joven había estudiado física —y, además, le entusiasmaba—, se dio la respuesta de inmediato:

—Simplemente esto es imposible. Si fuera posible vería luz en reposo; pero la luz en reposo no existe. Luego no lo puede hacer. Pero entonces aquí hay un problema, ¡y de los de verdad! La mecánica me dice que puedo moverme a la velocidad que yo quiera; la teoría electromagnética me dice que no puedo correr junto con un rayo de luz. Luego ¡hay una contradicción entre la mecánica de Newton y la teoría electromagnética de Maxwell!

Con este sencillo pero profundo razonamiento nuestro joven había llegado a una conclusión asombrosa; las dos teorías más importantes que la física del siglo XIX conocía, las dos teorías más importantes de toda la física clásica, ¡estaban en mutua contradicción! O una o la otra era correcta, o tal vez ninguna de las dos; pero no podían serlo las dos.

Lo que tenía que concluirse de tan simple razonamiento era que algo fundamental en el núcleo mismo de la física estaba mal. ¿Y qué se nos ocurriría si ahora agregamos, como para dramatizar aún más, que nuestro inquisitivo joven se planteaba por sí y para sí mismo esta interrogativa y llegaba a estas conclusiones cuando tenía no más de 16 años y que alrededor de diez años después, de este embrión teórico habría de surgir la primera gran revolución de la física del siglo XX: la teoría de la relatividad?

La pequeña anécdota que acabamos de contar ha sido tomada de la vida real. Ya muy cerca del final de su vida, Albert Einstein narró cómo, a fines de 1895 o tal vez principios de 1896, cuando vivía como huésped en casa de uno de sus profesores suizos —Jost Winteler, por quien Einstein tuvo un sincero afecto— en la pequeña ciudad de Aarau, se le ocurrió esta idea, hasta la que él trazaba el origen de la teoría de la relatividad. Einstein aprovechó la oportunidad para añadir un comentario de profundo significado filosófico: “La invención no es producto del pensamiento lógico, aun si el producto final está indisolublemente unido a una estructura lógica.” La observación invita a hacer una digresión, pero como ello nos llevaría muy fuera de nuestro tema, la dejamos para otra oportunidad.

Los experimentos pensados

El método seguido por el joven Einstein para descubrir la inconsistencia entre las teorías clásicas de la mecánica y el electromagnetismo puede parecer un tanto sorprendente a algún lector. ¿Cómo puede tomarse en serio un argumento que parte de suponer cosas tales como un individuo corriendo a la velocidad de la luz y similares disparates? Cualquier cosa que se concluya de ahí no tiene sentido. ¡Así de simple! Esta argumentación es errónea; se está construyendo lo que se llama un experimento pensado, es decir, un tren de pensamiento lógico y consistente en principio con las leyes de la física, que nos permite entender mejor un problema o alcanzar una conclusión firme, independientemente del hecho, meramente circunstancial e irrevelante, de si lo podemos llevar o no a afecto. En la vida real usamos a veces este tipo de experimentos pensados. Por ejemplo, cuando empezamos un argumento diciendo: “Supon que nos sacáramos la lotería y usáramos el premio para visitar Japón. Entonces podríamos ver que…” Lo más probable es que ni siquiera hayamos comprado billete para la lotería, y aunque lo tuviéramos, que tal vez ni a reintegro lleguemos; sin embargo, el argumento no por ello pierde su valor lógico y si nos sirve para aclarar las ideas, es legítimo su uso. Estos experimentos pensados —que en la jerga de los físicos son con frecuencia llamados gedankenexperiment— son de uso muy frecuente en la física teórica por su utilidad como mecanismo de razonamiento. Einstein en particular fue autor de varios muy conocidos; el que hemos usado en nuestra anécdota fue tal vez el primero que inventó y muchos otros fundadores de la física a partir de Galileo han recurrido a ellos para construir sus argumentos.

Einstein publicó su primer trabajo sobre la teoría de la relatividad en 1905; tenía entonces 26 años. Había terminado algunos años antes sus estudios de física en la Escuela Superior Técnica Federal de Zurich (conocida usualmente por sus siglas alemanas como ETH) y unas semanas antes había obtenido su doctorado (con un trabajo del que tendremos mucho que decir más adelante); vivía en Berna, casado con la joven matemática servia Mileva Maric; había renunciado a la ciudadanía alemana para adoptar la suiza y trabajaba, no en la Universidad, sino como experto técnico de tercera clase en la oficina de patentes en Berna. Habían pasado diez años desde su observación inicial de la existencia de contradicciones internas dentro de la física clásica y ahora presentaba una solución a ellas, inesperada y radical ¿Qué hacía este joven alemán estudianto en Suiza, interesado en la física, pero trabajando de técnico en una oficina de patentes y no enseñando en la universidad; portador de una ciudadanía que no era la suya? ¿Y qué importancia e interés podían tener estos problemas de física que le inquietaban y que empezaba a revolucionar con su singular talento, su incomparable intuición física y su poderosa capacidad de análisis lógico? Tratemos de acercarnos a todo esto poco a poco, empezando por el principio.

La física clásica

Einstein realizó sus estudios en el Instituto Tecnológico de Zurich (el ETH) para obtener diploma como profesor de física entre 1896 y 1900. El diploma le fue otorgado a fines de julio de 1900; más adelante tendremos oportunidad de ver qué cosas importantes para Einstein ocurrían en la física precisamente en esas fechas. Incidentalmente, es común oír decir que Einstein fue un mal estudiante; las calificaciones que acompañan al diploma muestran lo contrario.[2] Por haber completado sus estudios durante el siglo XIX, su formación quedó estrictamente dentro de lo que se llama la fisica clásica.

La física clásica es, a grandes rasgos, la que se elaboró hasta el siglo pasado. Claro está que aún hoy puede hacerse, y de hecho se hace, física que por su temática o por sus métodos es clásica. La razón de esta clasificación no tiene que ver con el calendario, sino que consiste en que, precisamente con el siglo XX, comenzaron a surgir las teorías físicas contemporáneas, las que por su carácter representan una visión nueva del mundo físico, no sólo no contemplada dentro de la física clásica, sino que se salen de su marco y, en alguna forma que habrá que calificar en el momento oportuno, la superan. La clasificación es obviamente arbitraria, pero nos vamos a apegar a ella. Sin embargo, también conviene advertir que para muchos autores la teoría de la relatividad es ya parte de la física clásica, reservándose el término de física moderna a la mecánica cuántica —de la que hablaremos más adelante— y las teorías vinculadas con ella, como son la física atómica, la nuclear, la de partículas elementales, etcétera.

La física clásica consta de las siguientes especialidades, en términos generales. El soporte básico, la teoría clásica más fundamental, es la mecánica clásica o mecánica newtoniana; la mecánica newtoniana a su vez consta de grandes ramas, como la mecánica de las partículas (cuerpos que por alguna razón podemos describir como puntitos en movimiento), la mecánica del cuerpo rígido (como el trompo, el giroscopio, un bat, etc.), la mecánica de los fluidos, que da origen a la hidrodinámica y temas afines (que estudian el comportamiento físico de líquidos y gases); la teoría de la elasticidad, o de cuerpos deformables, etc. Estas ramas a su vez con frecuencia dan lugar al desarrollo de importantes especialidades aplicadas, como la mecánica celeste, la acústica o muchas otras de la ingeniería. Además de la mecánica y sus derivaciones, la física clásica consta de la termodinámica (que en forma sencilla podemos definir como la teoría del calor y sus efectos), la óptica (estudio de los fenómenos luminosos) y, finalmente, la teoría de la electricidad y el magnetismo, o, más brevemente, teoría electromagnética.

La mecánica clásica

La más antigua de las ramas de la física clásica es la mecánica, aunque conocimientos sueltos de hidrostática, etc., se puedan trazar hasta la civilizaciones antiguas (quizá el ejemplo que primero se viene a la mente sea el de los griegos y muy en particular, Arquímedes y su conocida ley de flotación).

La mecánica clásica comenzó a tomar su forma actual a partir de la intervención de Galileo Galilei (1564-1642), quien la despojó del carácter especulativo que le había impreso la escolástica aristotélica (deformando con ello la esencia misma de las enseñanzas aristotélicas originales), para transformarla en una ciencia experimental. Tan importante es la obra de Galileo al respecto, que con sus estudios de mecánica no sólo desarrolló muy considerablemente esta ciencia, sino que estableció un método general para conocer la naturaleza, el comúnmente llamado método científico. Este método, en el caso de Galileo, consistía, en lo esencial, en la exigencia de recurrir directamente al experimento para obtener respuestas preferiblemente cuantitativas a las interrogantes planteadas, en vez de contentarse con consultar lo que al respecto había dicho Aristóteles, o alguno de sus intérpretes medievales. En forma alguna debe considerarse a Galileo como el primero o el único que en su época concibiera la necesidad de recurrir al experimento en vez de al dogma aristotélico para averiguar la verdad. —Baste recordar que enseñanzas similares ya las había propuesto el pensador inglés Roger Bacon (circa 1214-circa 1294) más de tres siglos antes—. Simplemente, Galileo fue el primer físico que recurre a él sistemáticamente como método para construir las teorías físicas. Por ejemplo —un tanto análogo a lo que hemos referido respecto de Einstein— a los 17 años hizo su primera observación física importante, a la que desde el momento inicial le dio un contenido cuantitativo: el periodo de un péndulo es el mismo, cualquiera que sea la amplitud de la oscilación.[3] (Años más tarde el astrónomo y físico holandés Christiaan Huygens (1629-1695) usó este principio para construir el reloj de péndulo). Su interés en la observación como fuente del conocimiento lo condujo a la construcción y uso a fondo del telescopio, lo que le permitió realizar un sinnúmero de descubrimientos de gran trascendencia para el desarrollo de la astronomía y la mecánica y, en particular, para el establecimiento definitivo del modelo de Copérnico del Sistema Solar.

El día de Navidad del año en que murió Galileo, nació Newton. Isaac Newton (1642-1727) transformó la mecánica rudimentaria de su época en la moderna mecánica clásica, no sólo descubriendo y sistematizando sus leyes fundamentales (en las tres leyes de Newton), sino inventando simultáneamente las matemáticas necesarias para expresar y usar estas leyes. Newton realizó su magistral proeza intelectual recién egresado de la universidad a los 25 años de edad y retirado del mundo académico en la finca campestre de la madre, donde se había acogido huyendo de la peste que asolaba Londres aquellos años. Ya hemos mencionado cómo una situación análoga se dio también en el caso de Einstein. De hecho, entre estas dos grandes figuras hay notables paralelismos.