Applications and Metrology at Nanometer-Scale 2 - Pierre-Richard Dahoo - E-Book

Applications and Metrology at Nanometer-Scale 2 E-Book

Pierre-Richard Dahoo

0,0
139,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Nanoscience, nanotechnologies and the laws of quantum physics are sources of disruptive innovation that open up new fields of application. Quantum engineering enables the development of very sensitive materials, sensor measurement systems and computers. Quantum computing, which is based on two-level systems, makes it possible to manufacture computers with high computational power. This book provides essential knowledge and culminates with an industrial application of quantum engineering and nanotechnologies. It presents optical systems for measuring at the nanoscale, as well as quantum physics models that describe how a two-state system interacts with its environment. The concept of spin and its derivation from the Dirac equation is also explored, while theoretical foundations and example applications aid in understanding how a quantum gate works. Application of the reliability-based design optimization (RBDO) method of mechanical structures is implemented, in order to ensure reliability of estimates from the measurement of mechanical properties of carbon nanotube structures. This book provides valuable support for teachers and researchers but is also intended for engineering students, working engineers and Master s students.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 230

Veröffentlichungsjahr: 2021

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Preface

Introduction

1 Measurement Systems Using Polarized Light

1.1. Introduction

1.2. Matrix optics

1.3. Photon emission and detection

1.4. Application exercises on interferometry

1.5. Appendices

1.6. Conclusion

2 Quantum-scale Interaction

2.1. Introduction

2.2. The spin through the Dirac equation

2.3. The density matrix for a two-level laser system

2.4. Ising’s phenomenological model for cooperative effects

3 Quantum Optics and Quantum Computers

3.1. Introduction

3.2. Polarized light in quantum mechanics

3.3. Introduction to quantum computers

3.4. Preparing a qubit

3.5. Application: interaction of a qubit with a classical field

3.6. Applying Ramsey fringes to evaluate the duration of phase coherence

4 Reliability-based Design Optimization of Structures

4.1. Introduction

4.2. Deterministic optimization

4.3. Reliability analysis

4.4. Reliability-based design optimization

4.5. Applications

4.6. Reliability-based design optimization in nanotechnology

4.7. Conclusion

Appendix: Short Overview of Quantum Mechanics

References

Index

End User License Agreement

List of Illustrations

Chapter 1

Figure 1.1. Crossing of a plane diopter for n1<n2 and n1>n2. For a colo...

Figure 1.2. Light radiation or vector radius of parameters r and θ. For a color ...

Figure 1.3.

Transfer matrix in an isotropic and homogeneous medium

Figure 1.4.

Transfer matrix at the crossing of a diopter

Figure 1.5.

Optical transfer matrices of different centered systems

Figure 1.6.

Optical assembly for a telescope in a lidar

Figure 1.7.

Transmission of a Gaussian beam by a thin lens

Figure 1.8.

Optical mounting of mirrors and retro-reflectors

Figure 1.9.

Light polarization states. For a color version of this figure, see

w...

Figure 1.10. Electric field vibrations in the polarization plane as a function o...

Figure 1.11. Electric field vibration after a linear polarizer. For a color vers...

Figure 1.12. Vibration of the electric field after a linear polarizer and differ...

Figure 1.13. Electric field vibration after a rotator. For a color version of th...

Figure 1.14. Combination of three devices. For a color version of this figure, s...

Figure 1.15.

Cross polarizers. For a color version of this figure, see

www.iste....

Figure 1.16. Probability distribution for a thermal source. For a color version ...

Figure 1.17. Probability distribution for a coherent source. For a color version...

Figure 1.18.

Light detection

Figure 1.19.

Beam splitter devices

Figure 1.20. Diagram of an interferometer. For a color version of this figure, s...

Figure 1.21. Diagram of a Fabry–Pérot cavity. For a color version of this figure...

Figure 1.22. Schematic diagram of the device of a lambda meter. For a color vers...

Reminder: Figure 1.22.

Schematic diagram of the device of a lambda meter

Reminder: Figure 1.22.

Schematic diagram of the device of a lambda meter

Figure 1.23.

Diagram of the light path and reference axes

Figure 1.24. Coordinate axes for p wave and s wave. For a color version of this ...

Figure 1.25. Diagram of a homodyne interferometer and of the paths s and p. For ...

Figure 1.26. Diagram of the interferometric measurement device. For a color vers...

Figure 1.27. Laser interferometer: a) homodyne and b) heterodyne. For a color ve...

Figure 1.28.

Dimensional metrology. For a color version of this figure, see

www....

Figure 1.29. Heterodyne laser interferometer with cube corners. For a color vers...

Reminder: Figure 1.29.

Heterodyne laser interferometer with cube corners

Figure 1.30. Electrical signals measured in the detection bandwidth. For a color...

Figure 1.31.

Elliptical polarization state and ellipsometric parameters [DAH 16]

Figure 1.32. Diagram of a phase modulation ellipsometer. For a color version of ...

Figure 1.33. Diagram of an ellipsometer in PCSA mode and reflected light. For a ...

Figure 1.34. Reference mark and sign convention to be adopted. For a color versi...

Chapter 2

Figure 2.1.

Parallel spins. For a color version of this figure, see

www.iste.co....

Figure 2.2.

Antiparallel spins. For a color version of this figure, see

www.iste...

Chapter 3

Figure 3.1.

Energy diagram of a two-level quantum system: a ground state

∣...

Figure 3.2. Bloch sphere of unit radius defined by a polar angle θ and an azimut...

Figure 3.3. Graphical representation of the CNOT gate acting on a two-qubit regi...

Figure 3.4. Schematic diagram of a quantum computation. The time goes from left ...

Figure 3.5. Realization of the Deutsch algorithm in a quantum computer with a tw...

Figure 3.6. Variation of the probability of the excited state population as a fu...

Chapter 4

Figure 4.1. Deterministic optimization based on reaching a safety factor level. ...

Figure 4.2.

Normal physical space. For a color version of this figure, see

www.i...

Figure 4.3.

Reliability index assessment process

Figure 4.4. Comparison between the solutions of the RBDO and DDO methods. For a ...

Figure 4.5. Total cost (CT), cost of failure (Cf) and initial cost of the struct...

Figure 4.6. Cantilever beam in free bending mode. For a color version of this fi...

Figure 4.7.

3D circular plate. For a color version of this figure, see

www.iste....

Figure 4.8. Amplitude of the displacement versus frequency; the area correspondi...

Figure 4.9.

Model of the circular plate. For a color version of this figure, see

...

Figure 4.10. Dimensions of the section of the hook under study. For a color vers...

Figure 4.11.

Finite element model of the hook. For a color

Figure 4.12. Sensitivity analysis of the parameters D1, D2, D3, D5, D6, Rc, R0 w...

Figure 4.13. Sensitivity analysis of the parameters D1, D2, D3, D5, D6, Rc, R0 w...

Figure 4.14. Various shapes of the optimal volume solution for the safety factor...

Figure 4.15. Optimal solution shape of volume and von Mises stress. For a color ...

Figure 4.16. The von Mises stress and the first mode along the X axis of the opt...

Figure 4.17.

Schematic cross-section of a six-layer printed circuit r

Figure 4.18. Architecture of the fiber-reinforced PCB: a) overview, b) detail of...

Figure 4.19. a) A laminate structure; b) types of laminates. For a color version...

Figure 4.20. Main steps of the optimization process of a PCB. For a color versio...

Figure 4.21. PCB cross-section and finite element mesh. For a color version of t...

Figure 4.22. Iso-surfaces of the effects of the volume ratio and the fiber orien...

Figure 4.23. Evolution of the orientation angle (a) and the volume ratio of fibe...

Figure 4.24. Evolution of the ratio between the thickness of FR4 and the copper ...

Figure 4.25. Load exerted on a thin-film SWCNT structure as a function of the di...

Figure 4.26. Finite element model of the indenter–film system. For a color versi...

Figure 4.27. Results of testing and modeling the load of a thin-film SWCNT struc...

Figure 4.28. Stress distribution of the film-substrate SWCNT system. For a color...

Figure 4.29. Effects of different forms of indenter on the load–displacement cur...

Figure 4.30. Effect of the thickness of the SWCNT structure on the load–displace...

Figure 4.31. Effect of the Young modulus of the substrate on the load–displaceme...

Figure 4.32. Load-displacement curves from testing and modeling. For a color ver...

Figure 4.33. Experimental and simulated discharge curves. For a color version of...

List of Tables

Chapter 3

Table 3.1.

Action of the H gate on the states of a qubit

Table 3.2.

Action of the CNOT gate on a two-qubit register

Table 3.3.

Action of the control phase gate CΦ on a two-qubit register

Chapter 4

Table 4.1.

RBDO results for a calculation before and after condensing the model

Table 4.2.

DDO and RBDO results

Table 4.3.

RBDO results for a calculation before and after model condensation

Table 4.4.

Initial parameters

Table 4.5.

DDO results for a safety factor of 1.5

Table 4.6.

DDO results for a safety factor of 1.2

Table 4.7.

DDO results for a safety factor of 1.1

Table 4.8. Comparison of the results obtained by the DDO method for the various ...

Table 4.9.

RBDO results

Table 4.10.

Results of the RBDO method for several limit states

Table 4.11.

Values of the parameters used for numerical simulations

Table 4.12.

Values of the parameters used in the genetic algorithm

Table 4.13.

Optimal values of PCB design variables

Table 4.14.

Results Of finite element simulations

Guide

Cover

Table of Contents

Title Page

Copyright

Preface

Introduction

Begin Reading

Appendix: Short Overview of Quantum Mechanics

References

Index

End User License Agreement

Pages

v

iii

iv

ix

x

xi

xiii

xiv

xv

xvi

xvii

xviii

xix

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

233

234

235

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Reliability of Multiphysical Systems Set

coordinated by

Abdelkhalak El Hami

Volume 10

Applications and Metrology at Nanometer Scale 2

Measurement Systems, Quantum Engineering and RBDO Method

Pierre Richard Dahoo

Philippe Pougnet

Abdelkhalak El Hami

First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.com

© ISTE Ltd 2021

The rights of Pierre-Richard Dahoo, Philippe Pougnet and Abdelkhalak El Hami to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020950471

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-687-6

Preface

At the nanoscale, properties of matter cannot be explained by the laws of classical physics. To build models capable of interpreting the properties of matter on this scale, it is necessary to rely on the principles of quantum mechanics. The radical concepts of quantum mechanics and the development of nanotechnologies have contributed to the emergence of quantum engineering and a quantum information science.

Quantum engineering includes very sensitive materials and sensors that open up new fields of application, nanometer-sensitive measurement systems based on photonics and communication systems that perform well in terms of security. Quantum computing includes quantum computers and the development of new algorithms. Quantum computers are made up of quantum systems with two energy levels that follow the same laws of behavior as atoms or electrons enabling, with the development of quantum computing algorithms, performance that cannot be achieved with classical computers. Quantum technologies, nanotechnologies and nanoscience are identified as the sources of disruptive innovations that will bring technologies considered essential in the 21st Century.

The purpose of Applications and Metrology at Nanometer Scale, a book in two volumes, is to provide essential knowledge that will lead to the industrial applications of quantum engineering and nanotechnologies. The authors, through their skills and experience, combine their know-how in fundamental physics, engineering sciences and industrial activities. As with Volume 1, Applications and Metrology at Nanometer Scale 2 is designed to provide applications for Nanometer-scale Defect Detection Using Polarized Light (Reliability of Multiphysical Systems Set Volume 2). It describes experimental and theoretical methods implemented in the framework of fundamental research to better understand physical–chemical processes at the nanoscale, presents examples of optical techniques based on the polarized light, allowing measurements to be made at the nanoscale, and illustrates the theoretical approaches with numerous applications.

This book is intended for master’s and PhD students, engineering students, professors and researchers in materials science and experimental studies, as well as for industrialists of large groups and SMEs in the electronics, IT, mechatronics, or optical or electronic materials fields.

Chapter 1 deals with optical systems that enable measurements to be made on a nanoscale: the Fabry–Pérot cavity, homodyne interferometry, heterodyne interferometry, the optical lambda meter and ellipsometry with a rotating analyzer. The emphasis is on applications through exercises or analysis of study results on the use of interference techniques to study matter and materials.

Chapter 2 presents models of quantum physics that describe how a quantum two-energy level system interacts with its environment. As a free particle such as the electron that interacts with an external magnetic field with its spin, the derivation of the concept of spin from the Dirac equation is explained, which is the subject of an application exercise. The concept of density matrix (definition, propagation, equation of motion) is then presented and applied to a laser system with two energy levels and to a set of atoms interacting with the oscillating electric field of an electromagnetic wave. Finally, the Ising phenomenological model is presented, which is the subject of an application exercise.

Chapter 3 aims to provide theoretical foundations and examples of applications to understand the functioning of a quantum gate. A reminder is given on the modeling of light in quantum mechanics and on the representation by the Bloch sphere of the states of a two-level quantum system. The functioning of a quantum computer is introduced. Examples of applications show how to use the Bloch sphere, predict the evolution of an initial state of the system and obtain, by coupling, the oscillations of the Rabi population. Another application studies the coupling of an atom with light radiation and the effect on Rabi oscillations of a disagreement between the frequency of the atom and the frequency of the radiation. A final exercise deals with obtaining Ramsey fringes and their application to the functioning of a quantum gate.

Chapter 4 presents a reliability-based design optimization (RBDO) method of mechanical structures. This method guarantees a balance between the cost of defining the system and the assurance of its performance under the planned conditions of use. It is based on taking into account uncertainties and on the simultaneous resolution of two issues: optimizing the cost of producing structures performing the expected functions while ensuring a sufficient probability of operation under conditions of use (reliability). The RBDO method is applied to the optimization of the parameters of several mechanical components and of a printed circuit of an electronic board, and to ensure the reliability of the estimate of the measurement of the mechanical properties of carbon nanotube structures (Young’s modulus of elasticity).

Pierre Richard DAHOO

Philippe POUGNET

Abdelkhalak EL HAMI

November 2020