Artificial Transmission Lines for RF and Microwave Applications - Ferran Martín - E-Book

Artificial Transmission Lines for RF and Microwave Applications E-Book

Ferran Martin

4,0
114,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology.

This book is devoted to the analysis, study and applications of artificial transmission lines mostly implemented by means of a host line conveniently modified (e.g., with modulation of transverse dimensions, with etched patterns in the metallic layers, etc.) or with reactive loading, in order to achieve novel device functionalities, superior performance, and/or reduced size.

The author begins with an introductory chapter dedicated to the fundamentals of planar transmission lines. Chapter 2 is focused on artificial transmission lines based on periodic structures (including non-uniform transmission lines and reactively-loaded lines), and provides a comprehensive analysis of the coupled mode theory. Chapters 3 and 4 are dedicated to artificial transmission lines inspired by metamaterials, or based on metamaterial concepts. These chapters include the main practical implementations of such lines and their circuit models, and a wide overview of their RF/microwave applications (including passive and active circuits and antennas). Chapter 5 focuses on reconfigurable devices based on tunable artificial lines, and on non-linear transmission lines. The chapter also introduces several materials and components to achieve tuning, including diode varactors, RF-MEMS, ferroelectrics, and liquid crystals. Finally, Chapter 6 covers other advanced transmission lines and wave guiding structures, such as electroinductive-/magnetoinductive-wave lines, common-mode suppressed balanced lines, lattice-network artificial lines, and substrate integrated waveguides.

Artificial Transmission Lines for RF and Microwave Applications provides an in-depth analysis and discussion of artificial transmission lines, including design guidelines that can be useful to researchers, engineers and students.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 916

Veröffentlichungsjahr: 2015

Bewertungen
4,0 (16 Bewertungen)
3
10
3
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

Cover

Title page

PREFACE

ACKNOWLEDGMENTS

1 FUNDAMENTALS OF PLANAR TRANSMISSION LINES

1.1 PLANAR TRANSMISSION LINES, DISTRIBUTED CIRCUITS, AND ARTIFICIAL TRANSMISSION LINES

1.2 DISTRIBUTED CIRCUIT ANALYSIS AND MAIN TRANSMISSION LINE PARAMETERS

1.3 LOADED (TERMINATED) TRANSMISSION LINES

1.4 LOSSY TRANSMISSION LINES

1.5 COMPARATIVE ANALYSIS OF PLANAR TRANSMISSION LINES

1.6 SOME ILLUSTRATIVE APPLICATIONS OF PLANAR TRANSMISSION LINES

REFERENCES

2 ARTIFICIAL TRANSMISSION LINES BASED ON PERIODIC STRUCTURES

2.1 INTRODUCTION AND SCOPE

2.2 FLOQUET ANALYSIS OF PERIODIC STRUCTURES

2.3 THE TRANSFER MATRIX METHOD

2.4 COUPLED MODE THEORY

2.5 APPLICATIONS

REFERENCES

3 METAMATERIAL TRANSMISSION LINES: FUNDAMENTALS, THEORY, CIRCUIT MODELS, AND MAIN IMPLEMENTATIONS

3.1 INTRODUCTION, TERMINOLOGY, AND SCOPE

3.2 EFFECTIVE MEDIUM METAMATERIALS

3.3 ELECTRICALLY SMALL RESONATORS FOR METAMATERIALS AND MICROWAVE CIRCUIT DESIGN

3.4 CANONICAL MODELS OF METAMATERIAL TRANSMISSION LINES

3.5 IMPLEMENTATION OF METAMATERIAL TRANSMISSION LINES AND LUMPED-ELEMENT EQUIVALENT CIRCUIT MODELS

REFERENCES

4 METAMATERIAL TRANSMISSION LINES: RF/MICROWAVE APPLICATIONS

4.1 INTRODUCTION

4.2 APPLICATIONS OF CRLH TRANSMISSION LINES

4.3 TRANSMISSION LINES WITH METAMATERIAL LOADING AND APPLICATIONS

REFERENCES

5 RECONFIGURABLE, TUNABLE, AND NONLINEAR ARTIFICIAL TRANSMISSION LINES

5.1 INTRODUCTION

5.2 MATERIALS, COMPONENTS, AND TECHNOLOGIES TO IMPLEMENT TUNABLE DEVICES

5.3 TUNABLE AND RECONFIGURABLE METAMATERIAL TRANSMISSION LINES AND APPLICATIONS

5.4 NONLINEAR TRANSMISSION LINES (NLTLS)

REFERENCES

6 OTHER ADVANCED TRANSMISSION LINES

6.1 INTRODUCTION

6.2 MAGNETOINDUCTIVE-WAVE AND ELECTROINDUCTIVE-WAVE DELAY LINES

6.3 BALANCED TRANSMISSION LINES WITH COMMON-MODE SUPPRESSION

6.4 WIDEBAND ARTIFICIAL TRANSMISSION LINES

6.5 SUBSTRATE-INTEGRATED WAVEGUIDES AND THEIR APPLICATION TO METAMATERIAL TRANSMISSION LINES

REFERENCES

Appendix A EQUIVALENCE BETWEEN PLANE WAVE PROPAGATION IN SOURCE-FREE, LINEAR, ISOTROPIC, AND HOMOGENEOUS MEDIA; TEM WAVE PROPAGATION IN TRANSMISSION LINES; AND WAVE PROPAGATION IN TRANSMISSION LINES DESCRIBED BY ITS DISTRIBUTED CIRCUIT MODEL

Appendix B THE SMITH CHART

Appendix C THE SCATTERING MATRIX

REFERENCE

Appendix D CURRENT DENSITY DISTRIBUTION IN A CONDUCTOR

Appendix E DERIVATION OF THE SIMPLIFIED COUPLED MODE EQUATIONS AND COUPLING COEFFICIENT FROM THE DISTRIBUTED CIRCUIT MODEL OF A TRANSMISSION LINE

Appendix F AVERAGING THE EFFECTIVE DIELECTRIC CONSTANT IN EBG-BASED TRANSMISSION LINES

Appendix G PARAMETER EXTRACTION

G.1 PARAMETER EXTRACTION IN CSRR-LOADED LINES

G.2 PARAMETER EXTRACTION IN SRR-LOADED LINES

G.3 PARAMETER EXTRACTION IN OSRR-LOADED LINES

G.4 PARAMETER EXTRACTION IN OCSRR-LOADED LINES

REFERENCES

Appendix H SYNTHESIS OF RESONANT-TYPE METAMATERIAL TRANSMISSION LINES BY MEANS OF AGGRESSIVE SPACE MAPPING

H.1 GENERAL FORMULATION OF ASM

H.2 DETERMINATION OF THE CONVERGENCE REGION IN THE COARSE MODEL SPACE

H.3 DETERMINATION OF THE INITIAL LAYOUT

H.4 THE CORE ASM ALGORITHM

H.5 ILLUSTRATIVE EXAMPLES AND CONVERGENCE SPEED

REFERENCES

Appendix I CONDITIONS TO OBTAIN ALL-PASS X-TYPE AND BRIDGED-T NETWORKS

ACRONYMS

INDEX

WILEY SERIES IN MICROWAVE AND OPTICAL ENGINEERING

END USER LICENSE AGREEMENT

List of Tables

Chapter 03

Table 3.1 Extracted element parameters for the structures of Figure 3.33

Table 3.2 Parameters for the circuit shown in Figure 3.35a, obtained from Table 3.1

Table 3.3 Extracted element parameters for the structures of Figure 3.39

Chapter 04

Table 4.1 Bandwidth characteristics in the conventional and artificial rat-race couplers

Table 4.2 Element values of the equivalent circuit model for the filter of Figure 4.30

Table 4.3 Comparison of split-ring elliptic lowpass filters

Chapter 06

Table 6.1 Extracted parameters and maximum fractional bandwidth inferred from the circuit model

Table 6.2 Measured eye parameters

Appendix H

Table H.1 Optimal coarse solution

Table H.2 Dimensions of final layouts

List of Illustrations

Chapter 01

Figure 1.1 Perspective three-dimensional view of a coaxial transmission line. The relevant geometry parameters of the line are indicated, and

ε

r

is the relative permittivity (or dielectric constant) of the dielectric material.

Figure 1.2 Perspective three-dimensional view of the indicated planar transmission lines, and relevant geometry parameters. These transmission lines are used for the implementation of distributed circuits, where the shape and transverse dimensions (

W

,

S

,

G

) of the line (or set of lines and stubs) are determined in order to obtain the required line functionality.

Figure 1.3 Lumped element equivalent circuit model (unit cell) of an ordinary transmission line.

Figure 1.4 Transmission line terminated with an arbitrary load, located at

z

 = 0.

Figure 1.5 Transmission line of length

l

fed by a voltage source and terminated with an arbitrary load, located at

z

 = 0.

Figure 1.6 Cascade connection of two transmission lines with different characteristic impedance.

Figure 1.7 Bounce diagram corresponding to the example discussed in the text. The vertical axis is the time axis.

Figure 1.8 Parallel plate transmission line with magnetic walls at the edges.

Figure 1.9 Microstrip ring resonator configuration used to extract the dielectric constant and loss tangent of the substrate (a), and typical frequency response with transmission peaks (b).

Figure 1.10 Cylindrical conductor with conductivity

σ

. The effective cross section for the calculation of the AC resistance is given by the annular gray region corresponding to one skin depth.

Figure 1.11 Schematic of two-port transmission lines. (a) Two-conductor unbalanced line, (b) two-conductor balanced line, and (c) three-conductor balanced line.

Figure 1.12 Order-9 Butterworth stepped impedance low-pass filter (a) and measured (solid line) and EM simulated (thin line) frequency response (b). The filter was fabricated on the

Rogers RO3010

substrate with dielectric constant

ε

r

 = 10.2, and thickness

h

 = 1.27 mm. Filter length is 9.4 cm.

Figure 1.13 Topology of the SISS in microstrip technology and relevant dimensions (

Z

2

Z

1

).

Figure 1.14 SISS-loaded microstrip line (a), insertion and return loss (b) and phase response (c).

Figure 1.15 Topology of a SIR (a), and folded SIR (b).

Figure 1.16 (a) Low-pass elliptic-function prototype filter with shunt connected series resonators (the circuit correspond to a fifth-order prototype), (b) topology of the SIR-based low-pass filter (order-3), (c) equivalent circuit model including parasitics, and (d) EM response, ideal filter prototype response and circuit response including parasitics. The considered substrate thickness and dielectric constant are

h

 = 254 μm and

ε

r

 = 11.2, respectively. Dimensions are

W

 = 5 mm,

G

 = 0.55 mm,

a

 = 3.24 mm,

b

 = 3.99 mm. Back side metal is indicated in black colour. The element values of the ideal prototype filter shown in (a) are

L

1

L

3

 = 4.7 nH,

L

2

 = 1.38 nH,

C

2

 = 2.98 pF. The element values of the complete circuit model in reference to the circuit shown in (c) are

L

1

L

3

 = 4.7 nH,

L

2

 = 1.65 nH,

C

2

 = 2.5 pF,

C

a

 = 0.08 pF,

C

b

 = 0.44 pF,

C

s

 = 0.115 pF. With regard to parasitics,

C

s

models the capacitance associated to the meander, and

C

a

,

C

b

are the capacitances from the central strip to the ground plane.

Figure 1.17 Kuroda identity used for the design of the filter of Figure 1.18.

Figure 1.18 Schematic (a), layout (b), and frequency response (c) of the low-pass filter based on Richard’s transformations. The relevant dimensions (in mm) are indicated. The circuit simulation in (c) was obtained by using a commercial circuit and schematic solver, where the transmission lines and stubs are modeled by the corresponding distributed models.

Figure 1.19 Canonical forms of the two-output distributed symmetric power splitter. (a) With two inverters and (b) with one inverter.

Figure 1.20 Example (layout) of a power splitter (a), and frequency response (b). Relevant dimensions (in mm) and device ports are indicated. The width of the three

λ

/4 lines gives a characteristic impedance of

. The considered substrate is the

Rogers RO3010

with dielectric constant

ε

r

 = 10.2 and thickness

h

 = 1.27 mm.

Figure 1.21 Example of a capacitively coupled

λ

/2 resonator bandpass filter (a) and frequency response (b). Relevant dimensions (in mm) are indicated. The considered substrate is the

Rogers RO3010

with dielectric constant

ε

r

 = 10.2 and thickness

h

 = 1.27 mm.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!