Chemistry - Heather Hattori - E-Book

Chemistry E-Book

Heather Hattori

0,0
15,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Practice makes perfect--and helps deepen your understanding of chemistry Every high school requires a course in chemistry, and many universities require the course for majors in medicine, engineering, biology, and various other sciences. 1001 Chemistry Practice Problems For Dummies provides students of this popular course the chance to practice what they learn in class, deepening their understanding of the material, and allowing for supplemental explanation of difficult topics. 1001 Chemistry Practice Problems For Dummies takes you beyond the instruction and guidance offered in Chemistry For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in chemistry. Plus, an online component provides you with a collection of chemistry problems presented in multiple-choice format to further help you test your skills as you go. * Gives you a chance to practice and reinforce the skills you learn in chemistry class * Helps you refine your understanding of chemistry * Practice problems with answer explanations that detail every step of every problem Whether you're studying chemistry at the high school, college, or graduate level, the practice problems in 1001 Chemistry Practice Problems For Dummies range in areas of difficulty and style, providing you with the practice help you need to score high at exam time.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 524

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



1,001 Chemistry Practice Problems For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: while the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. no warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. you should consult with a professional where appropriate. neither the publisher nor the author shall be liable for damages arising herefrom.

For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013949063

ISBN 978-1-118-54932-2 (pbk); ISBN 978-1-118-54933-9 (ebk); ISBN 978-1-118-54935-3 (ebk); ISBN 978-1-118-54940-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1,001 Chemistry Practice Problems For Dummies®

Visit www.dummies.com/cheatsheet/1001chemistry to view this book's cheat sheet.

Table of Contents

Introduction

What You’ll Find

Beyond the Book

What you’ll find online

How to register

Where to Go for Additional Help

Part I: The Questions

Chapter 1: Units and Unit Conversions

The Problems You’ll Work On

What to Watch Out For

Chapter 2 : Scientific Notation and Significant Figures

The Problems You’ll Work On

What to Watch Out For

Chapter 3: Matter and Energy

The Problems You’ll Work On

What to Watch Out For

Chapter 4: The Atom and Nuclear Chemistry

The Problems You’ll Work On

What to Watch Out For

Chapter 5: Periodicity and the Periodic Table

The Problems You’ll Work On

What to Watch Out For

Chapter 6: Ionic Bonding

The Problems You’ll Work On

What to Watch Out For

Chapter 7: Covalent Bonding

The Problems You’ll Work On

What to Watch Out For

Chapter 8: Molecular Geometry

The Problems You’ll Work On

What to Watch Out For

Chapter 9: Chemical Reactions

The Problems You’ll Work On

What to Watch Out For

Chapter 10: Molar Calculations

The Problems You’ll Work On

What to Watch Out For

Chapter 11: Thermochemistry

The Problems You’ll Work On

What to Watch Out For

Chapter 12: Gases

The Problems You’ll Work On

What to Watch Out For

Chapter 13: Solutions (The Chemistry Kind)

The Problems You’ll Work On

What to Watch Out For

Chapter 14: Acids and Bases

The Problems You’ll Work On

What to Watch Out For

Chapter 15: Graphing Basics

The Problems You’ll Work On

What to Watch Out For

Part II: The Answers

Chapter 16: Answers and Explanations

Appendix: The Periodic Table of Elements

End User License Agreement

Introduction

Whether you’re taking your first chemistry course, you’re taking your last chemistry course, or you just need a little practice before taking a test that contains chemistry questions (like a nursing, pre-med, or teacher certification test), doing problems is a fine way to prepare.

The 1,001 practice questions in this book cover topics that you might encounter in a high school chemistry course, an introductory college chemistry course, the first semester of a general chemistry course for science majors, or a general science test for entry into a pre-professional program. The types of questions here are similar to the ones you may see on homework assignments, quizzes, practice tests, or actual tests.

You can start at Question 1 or Question 121 or skip around. You may find that your instructor (or textbook) covers topics in a different order from this book. That’s okay; just go to the table of contents, find the topic you need, and start there.

Completing 1,001 chemistry practice questions is no small undertaking, but the time you spend practicing valuable science, math, and chemistry skills can improve your scores and help you “know what you know.”

What You’ll Find

The 1,001 chemistry practice questions in this book are divided among 15 chapters, each one representing a few major subject areas in chemistry. Within each chapter, questions are grouped by topic and arranged from easy to hard, allowing you to answer beginner questions as well as multi-step and more difficult questions. Some questions are accompanied by an image or diagram that you need in order to answer the question correctly.

After you answer the questions for one chapter or subcategory — or even after you answer just one question — you can flip to the last chapter of the book and check your answers. There, you find thorough answer explanations for each problem, often covering processes, formulas, and definitions. In many cases, studying an answer explanation can help you better understand a difficult subject, so spend as much time as you need reviewing the explanations.

Beyond the Book

This book gives you plenty of chemistry questions to work on. But maybe you want to track your progress as you tackle the questions, or maybe you’re having trouble with different types of questions and wish they were all presented in one place. You’re in luck. Your book purchase comes with a free one-year subscription to all 1,001 practice questions online. You get on-the-go access any way you want it — from your computer, smartphone, or tablet. Track your progress and view personalized reports that show what you need to study the most. Study what, where, when, and how you want.

What you’ll find online

The online practice that comes free with this book offers the same 1,001 questions and answers that are available here. The beauty of the online problems is that you can customize your online practice to focus on the topic areas that give you the most trouble. So if you need help naming binary compounds or solving combined gas law problems, just select those question types online and start practicing. Or if you’re short on time but want to get a mixed bag of a limited number of problems, you can specify the number of problems you want to practice. Whether you practice a few hundred problems in one sitting or a couple dozen, and whether you focus on a few types of problems or practice every type, the online program keeps track of the questions you get right and wrong so you can monitor your progress and spend time studying exactly what you need.

You can access this online tool using an access code, as described in the next section. Keep in mind that you can create only one login with your access code. After the access code is used, it’s no longer valid and is nontransferable, so you can’t share your access code with other users after you establish your login credentials.

This product also comes with an online Cheat Sheet that helps you increase your odds of performing well in chemistry. Check out the free Cheat Sheet at www.dummies.com/cheatsheet/1001Chemistry. (No access code required. You can access this info before you even register.)

How to register

To gain access to additional tests and practice online, all you have to do is register. Just follow these simple steps:

1. Find your PIN access code:

• Print-book users: If you purchased a print copy of this book, turn to the inside front cover of the book to find your access code.

• E-book users: If you purchased this book as an e-book, you can get your access code by registering your e-book at www.dummies.com/go/getaccess. Go to this website, find your book and click it, and answer the security questions to verify your purchase. You’ll receive an email with your access code.

2. Go to Dummies.com and click Activate Now.

3. Find your product (1,001 Chemistry Practice Problems For Dummies) and then follow the on-screen prompts to activate your PIN.

Now you’re ready to go! You can come back to the program as often as you want — simply log on with the username and password you created during your initial login. No need to enter the access code a second time.

For Technical Support, please visit http://wiley.custhelp.com or call Wiley at 1-800-762-2974 (U.S.), +1-317-572-3994 (international).

Where to Go for Additional Help

It’s easy to get overwhelmed when trying to study a subject as integrated as chemistry. But don’t despair. This book is designed to break everything into less complex categories so you can concentrate on one topic at a time. Practicing in smaller areas within each topic helps you identify your strong points and your weak points.

After you use this book and identify the areas you feel need extra effort, you can start studying on your own and then come back here to answer the questions again to measure your improvement. For example, if your knowledge of molarity is a little hazy (or nonexistent), try reviewing the molar calculations in Chapter 10. Check your answers and jot down notes or questions you may have. Then research, say, how solution concentration is expressed using molarity or which biology applications might use molarity. You can look for resources at your local library or online, or you can ask a friend, coworker, or professor to coach you if he or she seems to spend a lot of time in the lab. You can also check out the For Dummies series for books about many of the topics covered in chemistry. Head to www.dummies.com to see the many books and articles that can help you in your studies.

1,001 Chemistry Practice Questions For Dummies gives you just that — 1,001 practice questions and answers in order for you to practice your chemistry skills. If you need more in-depth study and direction for your chemistry courses, you may want to try out the following For Dummies products:

Chemistry Essentials For Dummies: This book is a quick-reference resource that outlines key topics found in a first-year high school chemistry course or a first-semester college chemistry course.

Chemistry For Dummies: This book provides content parallel to the 1,001 chemistry practice problems found in this book.

Chemistry II For Dummies: This book provides content similar to what you may encounter in a second-year high school chemistry course or a second-semester college chemistry course.

AP Chemistry For Dummies: This book prepares the Advanced Placement chemistry student to take the College Board’s AP Chemistry exam. It also includes tools for organizing and planning your study time.

Chemistry Workbook For Dummies: This book includes basic instruction, chemistry problems worked step-by-step, shortcuts, and more practice problems.

Several For Dummies chemistry titles are also available for download to your electronic device(s).

Part I

The Questions

Visit www.dummies.com for free access to great For Dummies content online.

In this part . . .

One thousand one chemistry problems — that’s a lot of chemistry practice. Hundreds of our former students have persevered through what we’re sure they felt was even more than that. Here are the general types of questions you’ll be dealing with:

The basics of chemistry (Chapters 1–5)

Chemical bonding (Chapters 6–8)

Chemical reactions (Chapters 9–11)

Acids, bases, liquids, and gases (Chapters 12–14)

Graphing (Chapter 15)

Chapter 2

Scientific Notation and Significant Figures

Scientific notation allows you to write very large and very small numbers, which are common in chemistry, in a simplified manner. Many chemical experiments involve very precise measurements. The significant figures are an indication of the precision of these measurements. In calculations involving more than one measurement, you need to maintain the precision inherent in the significant figures.

The Problems You’ll Work On

In this chapter, you work with scientific notation and significant figures in the following ways:

Expressing numbers in standard and scientific notation

Doing calculations with numbers in scientific notation

Determining significant figures

Combining math operations with significant figures

What to Watch Out For

Remember the following when working on scientific notation and significant figures:

All nonzero digits and zeroes between nonzero digits are significant. Zeroes to the left in the number (leading zeroes) are never significant. Zeroes to the right are significant only if they aren’t just indicating the power of ten.

Don’t confuse the addition/subtraction rule with the multiplication/division rule. Be extra careful when solving mixed-operation problems.

Most calculators convert to and from scientific notation, but double-check the answer. Calculators are complete idiots concerning the rules for significant figures.

Putting Numbers in Scientific Notation

76–80 Express the given number in scientific notation.

76. 876

77. 4,000,001

78. 0.000510

79. 900 × 104

80. 10

Taking Numbers out of ­Scientific Notation

81–85 Convert the given number to nonscientific notation (regular decimal form).

81. 2.00 × 102

82. 9 × 10–2

83. 4.7952 × 103

84. 1.64 × 10–5

85. 0.83 × 10–1

Calculating with Numbers in Scientific Notation

86–105 Complete the calculations and record your answer in scientific notation. (If you use a calculator, choose a mode that doesn’t put the numbers in scientific notation for you.)

105.

Recognizing Significant ­Figures

106–115 Indicate how many significant figures (significant digits) are in the given number.

106. 343

107. 0.4592

108. 705,204

109. 0.0075

110. 248,000

111. 9,400,300

112. 1.0070

113. 3,000,000.0

114. 0.0040800

115. 0.870

Writing Answers with the Right Number of Sig Figs

116–135 Complete the calculation and express your answer using the correct number of significant figures.

131.

133.

134.

135.

Chapter 3

Matter and Energy

Chemists deal with matter. Matter occurs in many forms with certain observable properties. One easily observable property of matter is density, which is the mass of a sample of matter divided by its volume. It’s possible to alter matter either physically or chemically. All alterations involve energy.

The Problems You’ll Work On

In this chapter, you work with matter and energy in the following ways:

Describing phases of matter

Classifying matter as substances and mixtures

Understanding properties of matter

Determining density

Calculating energy and temperature

What to Watch Out For

Remember the following when working on matter and energy:

Know the properties of solids, liquids, and gases on microscopic and macroscopic levels.

Remember that a density must have a mass unit divided by a volume unit.

Phases of Matter and Phase Changes

136–143 Check your understanding of phases of matter and phase changes.

136. Which phase of matter doesn’t have a definite shape or a definite volume under normal conditions?

137. Which phase of matter has a definite shape and a definite volume?

138. Which phase of matter has a definite volume but takes the shape of the container that it’s in?

139. When matter changes from a liquid to a solid, which phase change is it going through?

140. When matter changes from a gas to a liquid, which phase change is it going through?

141. When matter changes from a liquid to a gas, which phase change is it going through?

142. When matter changes from a solid to a gas without becoming a liquid in between, which phase change is it going through?

143. When matter changes from a gas to a solid without becoming a liquid in between, which phase change is it going through?

Classifying Substances and Mixtures

144–152 Classify each type of matter as a pure substance or mixture. Then classify each pure substance as an element or compound and each mixture as homogeneous or heterogeneous.

144. Gold

145. Table sugar

146. Fresh air

147. Oxygen

148. Vegetable soup

149. Fruit salad

150. Calcium

151. Concrete

152. Smog

Properties of Matter

153–165 Check your understanding of the properties of matter.

153. Which type of property of matter doesn’t depend on the amount of the substance that’s present?

154. Which type of change involves a change in the form of a substance?

155. Which type of change involves a change in the identity of a substance?

156. Which type of property of matter depends on exactly how much of the substance is present?

157. Density is a(n) _______________ (chemical/extensive physical/intensive physical) property.

158. Length is a(n) _______________ (chemical/extensive physical/intensive physical) property.

159. Color is a(n) _______________ (chemical/extensive physical/intensive physical) property.

160. Flammability is a(n) _______________ (chemical/extensive physical/intensive physical) property.

161. Mass is a(n) _______________ (chemical/extensive physical/intensive physical) property.

162. Odor is a(n) _______________ (chemical/extensive physical/intensive physical) property.

163. Ductility is a(n) _______________ (chemical/extensive physical/intensive physical) property.

164. Electrical conductivity is a(n) _______________ (chemical/extensive physical/intensive physical) property.

165. Solubility is a(n) _______________ (chemical/extensive physical/intensive physical) property.

Calculating Density

166–174 Perform the density calculations. Be sure to round your answers to the correct number of significant figures. (See Chapter 2 for significant figure problems.)

166. In grams per cubic centimeter, what is the density of a substance with a mass of 57.5 g and a volume of 5.0 cm3?

167. A 25.0-mL sample of a liquid has a mass of 22.1 g. What is the liquid’s density in grams per milliliter?

168. The mass of 2.00 m3 of a gas is 3,960 g. What is the density of this gas in kilograms per cubic meter?

169. What is the mass, in grams, of 0.200 L of a saltwater solution with a density of 1.2 g/mL?

170. Aluminum is a metal that has a density of 2.7 g/cm3. How many grams are in a solid cube of aluminum that measures 3.00 cm per side?

171. If a block has a length of 5.0 cm, a width of 3.0 cm, a height of 2.0 cm, and a mass of 120. g, what is the block’s density?

172. What is the mass, in kilograms, of 1.5 L of solid gold? Solid gold has a density of 19.3 g/cm3.

173. If a sample of gasoline has a mass of 77.0 g and a density of 0.71 g/mL, what is the volume of the gasoline in milliliters?

174. What is the length of one side of a metallic cube that has a density of 10.5 g/cm3 and a mass of 672 g?

Working with Energy

175–190 Assess your understanding of energy and related calculations.

175. Which unit represents the amount of energy necessary to raise the temperature of 1 g of water by 1°C?

176. Which SI unit is used to express the heat content of a mole of a chemical?

177. Which unit is used to express the energy found in food?

178. A bucket on a ladder has __________ (kinetic/potential) energy, which is the energy of __________ (motion/position).

179. A rolling ball has __________ (kinetic/potential) energy, which is the energy of __________ (motion/position).

180. Fuels contain __________ (moving/stored) energy, which is __________ (kinetic/­potential) energy.

181. How many kilocalories are in 25,970 J?

182. How many joules are in 3.1 × 108 kilocalories?

183. Average kinetic energy can be measured in what units?

184. If water is heated to 80.0°C, how many ­kelvins is that?

185. The melting point of sodium chloride is 1,074 K. What temperature is this in degrees Celsius?

186. Liquid oxygen boils at –183°C. How many degrees Fahrenheit is this?

187. Normal human body temperature is considered to be around 98.6°F. How many degrees Celsius is this?

188. Adding dry ice to acetone brings the temperature down to –78°C. What is this ­temperature in degrees Fahrenheit?

189. One summer day, the temperature was recorded as 113°F. How many kelvins is this?

190. Room temperature is about 300. K. How many degrees Fahrenheit is this?

Chapter 4

The Atom and Nuclear Chemistry

An atom consists of a nucleus surrounded by one or more electrons. Although the number of protons identifies the element, the electrons are the key to the chemistry. The arrangement of electrons in an atom influences the atom’s ability to gain, lose, or share electrons and therefore form compounds. Quantum numbers describe the arrangement of the electrons. Unstable atoms undergo nuclear decay to transform to stable atoms. Atoms may be broken apart by fission or joined by fusion.

The Problems You’ll Work On

In this chapter, you work with atoms and nuclear chemistry in the following ways:

Counting subatomic particles

Interpreting isotope notation

Writing electron configurations

Calculating average atomic mass and percent abundance

Understanding nuclear decay and balancing nuclear equations

Note: For access to the periodic table, see the Appendix.

What to Watch Out For

Remember the following when working on atoms and nuclear chemistry:

Note that unlike the atomic mass, the mass number is usually not found on the periodic table.

Remember the maximum number of electrons possible in each subshell, and follow Hund’s rule and the Aufbau principle when filling orbitals. Know the rules for assigning the four quantum numbers.

Know the common nuclear decay modes.

Remember that balancing nuclear equations depends on both the mass numbers and the atomic numbers.

Know how to calculate the half-life and how to use it.

Isotopes and Subatomic ­Particles

191–219 Answer the question on isotopes and subatomic particles.

191. How many protons are in an atom of sodium?

192. How many electrons are in an atom of bromine?

193. How many electrons are in an atom of nickel?

194. How many protons are in an atom of radon?

195. How many neutrons are in an atom of isotope potassium-40?

196. How is the atomic number related to the number of protons in an atom?

197. How is the mass number of an atom related to the number of neutrons?

198. How many protons, electrons, and neutrons are in an atom of isotope copper-63?

199. An atom has a mass number of 14 and 6 electrons. How many protons and neutrons does it have?

200. An atom has 40 electrons and 51 neutrons. What is its mass number, and how many protons does it have?

201. What does the top number in isotope notation represent?

202. What does the bottom number in isotope notation represent?

203. How many protons and neutrons are in ?

204. How many protons and neutrons are in ?

205. What is the isotope notation for an atom of carbon-12?

206. What is the isotope notation for an atom of chlorine-37?

207. What is the name of ?

208. How does an ion differ from an atom of the same element with regard to the numbers of subatomic particles?

209. When two atoms or ions have the same number of electrons, they’re said to be __________.

210. When an ion has a positive charge, how do the numbers of subatomic particles differ?

211. When an ion has a negative charge, how do the numbers of subatomic particles differ?

212. How many protons and electrons does have?

213. How many protons and electrons does have?

214. How many protons and electrons does have?

215. How many protons and electrons does have?

216. What is the isotope notation for an ion of silver-109 with a charge of positive 1?

217. What is the isotope notation for an ion of sulfur-34 with a charge of negative 2?

218. How many protons, neutrons, and electrons are in ?

219. How many protons, neutrons, and electrons are in ?

Electrons and Quantum ­Mechanics

220–234 Answer the questions on electrons and quantum mechanics.

220. What is the name of the premise that one electron fills each orbital in a subshell until all orbitals contain one electron and then electrons are added to fill in the second available spot in the subshell?

221. What rule or principle describes the order in which electrons fill orbitals?

222. What is the maximum number of electrons that can be in the f orbitals?

223. What is the maximum number of electrons that can be in the p orbitals?

224. What is the electron configuration of carbon?

225. What is the electron configuration of magnesium?

226. What is the electron configuration of argon?

227. What is the electron configuration of bromine?

228. What is the electron configuration of zirconium?

229. What is the expected electron configuration of plutonium?

230. Which quantum number describes the spin of the electron?

231. Which quantum number describes the average distance between the nucleus and the orbital?

232. Which quantum number describes how the various orbitals are oriented in space?

233. Which quantum number describes the shape of the orbital?

234. What are the possible values for the spin quantum number?

Average Atomic Mass

235–242 Answer the questions on average atomic mass.

235. The decimal numbers in the blocks of the periodic table represent the __________.

236. What is the average atomic mass of lithium that is 7.59% lithium-6 (mass of 6.0151 amu) and 92.41% lithium-7 (mass of 7.0160 amu)?

237. What is the average atomic mass of chlorine that is 75.78% chlorine-35 (mass of 34.96885 amu) and 24.22% chlorine-37 (mass of 36.9659 amu)?

238. What is the average atomic mass of magnesium, given the information in the following table?

Isotope

Percent Abundance

Atomic Mass (amu)

78.99

23.985

10.00

24.986

11.01

25.983

239. What is the average atomic mass of potassium, given the information in the following table?

Isotope

Percent Abundance

Atomic Mass (amu)

93.258

38.9637

0.01170

39.9640

6.7302

40.9618

240. What is the average atomic mass of iron, given the information in the following table?

Isotope

Percent Abundance

Atomic Mass (amu)

5.845

53.9396

91.754

55.9349

2.119

56.9354

0.282

57.9333

241. What is the average atomic mass of krypton, given the information in the following table?

Isotope

Percent Abundance

Atomic Mass (amu)

0.350

77.9204

2.28

79.9164

11.58

81.9135

11.49

82.9141

57.00

83.9115

17.30

85.9106

242. If the average atomic mass of boron is 10.81 amu, what is the percent abundance of boron-11 (mass of 11.009306 amu) if the only other isotope is boron-10 (mass of 10.012937 amu)?

Nuclear Reactions and ­Nuclear Decay

243–252 Answer the question on aspects of nuclear reactions and nuclear decay.

243. What is the primary nuclear process that occurs in the sun?

244. In which nuclear process does a nucleus split into two or more smaller elements and possibly some extra neutrons?

245. What is it called when a helium nucleus is ejected from the nucleus of an atom during a nuclear reaction?

246. When a ray is a byproduct of a nuclear reaction, what nuclear process has occurred?

247. What is the isotope (nuclear) notation for a particle that is produced from beta decay?

248. A particle is a product of which nuclear reaction?

249. is an example of what type of nuclear reaction?

250. is an example of what type of nuclear reaction?

251. is an example of what type of nuclear reaction?

252. is an example of what type of nuclear reaction?

Completing Nuclear Reactions

253–260 Determine the missing part of the equation.

253.

254.

255.

256.

257.

258.

259.

260.

Half-Lives

261–270 Answer the question on half-lives.

261. After five half-lives, how many grams of a 400.-g radioactive sample remain undecayed?

262. After three half-lives, how many grams of a 50.0-g radioactive sample have decayed?

263. If 5.15 g of a radioactive sample remains undecayed after six half-lives, how many grams were in the original sample?

264. A radioactive sample starts with 1.500 × 1020 undecayed atoms. When measured again at a later date, the sample has 9.375 × 1018 undecayed atoms. How many half-lives have passed?

265. What fraction of a sample remains undecayed after 39 hours if the half-life of the sample is 13 hours?

266. Iodine-131 has a half-life of 8.02 days. If the original sample contained 25.0 g of iodine-131, how many grams have decayed after 56.14 days?

267. Strontium-90 has a half-life of 28.9 years. How many grams were in the original sample if 11 g remain undecayed after 115.6 years?

268. In 5 minutes, a radioactive sample decays from 2.56 × 1010 atoms to 8.00 × 108 atoms. How long is the isotope’s half-life?

269. What fraction of a sample has decayed after 320 days if the half-life of the sample is 160 days?

270. If a radioactive sample decays from 2.5 kg to 0.61 g and the isotope has a half-life of 9.35 hours, how much time has passed?

Chapter 5

Periodicity and the Periodic Table

The periodic table is much more than a simple listing of the symbols of the elements with additional information about each element. The position of an element on the periodic table indicates many of the element’s properties. In addition, the position gives information on how the properties of an element relate to those of its neighbors. However, watch out for exceptions to the general trends.

The Problems You’ll Work On

In this chapter, you work with periodicity and the periodic table in the following ways:

Recognizing element symbols

Understanding the structure of the periodic table

Identifying periodic trends

Note: For reference, you can find the periodic table in the Appendix.

What to Watch Out For

Don’t let common mistakes trip you up; remember the following when working on periodicity and the periodic table:

The position of an element on the periodic table gives important information.

Don’t confuse periods (rows) with groups (columns).

Learn the basic periodic trends. Note that hydrogen is an exception to nearly all trends and that the top member of each group on the periodic table shows a slight variation to most trends.

Element Symbols and Names

271–290 Check your knowledge of the symbols and names of elements on the periodic table.

271. What is the symbol for the element carbon?

272. What is the symbol for the element chlorine?

273. What is the symbol for the element aluminum?

274. What is the symbol for the element cadmium?

275. What is the symbol for the element copper?

276. What is the symbol for the element arsenic?

277. What is the symbol for the element sodium?

278. What is the symbol for the element potassium?

279. What is the symbol for the element iron?

280. What is the symbol for the element silver?

281. What is the name of the element that has the symbol N?

282. What is the name of the element that has the symbol S?

283. What is the name of the element that has the symbol Br?

284. What is the name of the element that has the symbol P?

285. What is the name of the element that has the symbol Mn?

286. What is the name of the element that has the symbol At?

287. What is the name of the element that has the symbol Ra?

288. What is the name of the element that has the symbol Hg?

289. What is the name of the element that has the symbol Sn?

290. What is the name of the element that has the symbol Pa?

Structure of the Periodic Table

291–310 Answer the questions on the structure of the periodic table.

291. A period goes in which direction on the periodic table?

292. Where are the metalloids located in the periodic table?

293. Where on the periodic table are the alkaline earth metals located?

294. Where on the periodic table are the transition metals located?

295. Where on the periodic table are the noble gases located?

296. Where on the periodic table are the inner transition metals located?

297. Where on the periodic table are the alkali metals located?

298. Which chemist is most often recognized for basing the arrangement of the periodic table on atomic mass and other physical properties of the elements?

299. Which scientist placed the elements in order of increasing atomic number on the periodic table?

300. Where on the periodic table are most of the elements that exist as gases at room temperature?

301. To which family does the element potassium belong?

302. To which family does the element silver belong?

303. To which family does the element selenium belong?

304. To which family does the element tin belong?

305. To which family does the element iodine belong?

306. To which family does the element calcium belong?

307. To which family does the element aluminum belong?

308. To which family does the heaviest naturally occurring element belong?

309. Which family of elements contains the only metal that’s liquid at room temperature?

310. Which family of elements contains the only nonmetal that’s liquid at room temperature?

Periodic Trends

311–330 Examine your knowledge of periodic trends.

311. Members of which family have three valence electrons?

312. Members of which family have five valence electrons?

313. Members of which family have two valence electrons?

314. The atomic masses of the elements generally __________ (increase/decrease/remain the same) going from left to right in a period and __________ (increase/decrease/remain the same) going down a family.

315. The atomic radii of the elements __________ (increase/decrease/remain the same) going from left to right in a period and __________ (increase/decrease/remain the same) going down a family.

316. What term describes the amount of energy needed to remove an electron from a gaseous atom?

317. What term describes the energy change that results from adding an electron to a gaseous atom or ion?

318. The ionic radius of an anion is __________ (larger than/smaller than/the same size as) the atomic radius of the neutral atom because the ion has __________ (more/fewer/an equal number of)electrons compared to the atom.

319. The atomic radii of the elements __________ (increase/decrease/remain the same) going from left to right in a period because the effective nuclear charge __________ (increases/decreases).

320. Rank the following elements from smallest to largest atomic radius: Ba, Be, Ca.

321. Rank the following elements from smallest to largest atomic radius: Cl, P, S.

322. Rank the following elements from lowest to highest ionization energy: B, C, Li.

323. Rank the following elements from lowest to highest ionization energy: Br, Cl, I.

324. Rank the following elements from lowest to highest electron affinity: F, O, N.

325. Rank the following elements from lowest to highest electron affinity: S, Se, Te.

326. Rank the following elements from most to least metallic character: Cl, Si, Sn.

327. Rank the following elements from smallest to largest atomic radius: K, Mg, Na.

328. Rank the following ions from largest to smallest ionic radius: F–, O2–, S2–.

329. Rank the following elements from highest to lowest ionization energy: Cs, F, Li.

330. Rank the following elements from lowest to highest ionization energy: Ba, Bi, N.

Chapter 6

Ionic Bonding

Ionic compounds usually contain a metal (from the left side of the periodic table) and a nonmetal (from the right side of the periodic table, other than the noble gases). Some ionic compounds contain polyatomic ions, such as the sulfate ion SO42–. Ternary compounds technically contain three elements; however, more may be present. The names of ionic compounds consist of two or more words. The last word in the name of a binary compound has an -ide suffix. The last word in the name of a ternary compound usually has an -ite or an -ate suffix. Pure acids are generally not ionic, but they produce ions in solution.

The Problems You’ll Work On

In this chapter, you work with ionic bonding in the following ways:

Naming binary compounds

Naming ternary compounds

Writing formulas for ionic compounds

Note: See the Appendix if you need to check the periodic table.

What to Watch Out For

Remember the following when working on ionic bonding problems:

The names of inorganic compounds normally consist of two words.

All simple binary compounds have an -ide suffix on the second word in the name.

The -ide suffix is not common in compounds containing three or more elements. Most compounds containing three or more elements have either an -ite or -ate suffix.

Don’t use multiplying prefixes, such as di- and tri-, for ionic compounds.

If you use the “crisscross” rule, don’t forget to reduce.

Acids follow their own rules for naming.

Naming Binary Compounds

331–347 Name the binary ionic compound given the formula.

331. What is the name of NaCl?

332. What is the name of CaO?

333. What is the name of AlBr3?

334. What is the name of K2S?

335. What is the name of Al2O3?

336. What is the name of Li3N?

337. What is the name of MgI2?

338. What is the name of SrSe?

339. What is the name of BaF2?

340. What is the name of NaH?

341. What is the name of Zn3P2?

342. What is the name of CuBr2?

343. What is the name of AuCl3?

344. What is the name of CoS?

345. What is the name of MnF3?

346. What is the name of Hg2I2?

347. What is the name of SnO2?

Naming Compounds with Polyatomic Ions

348–364 Name the compounds containing polyatomic ions.

348. What is the name of NaClO?

349. What is the name of KOH?

350. What is the name of SrSO3?

351. What is the name of CaCO3?

352. What is the name of AlPO4?

353. What is the name of NaClO3?

354. What is the name of GaPO3?

355. What is the name of NH4Cl?

356. What is the name of ZnSO4?

357. What is the name of (NH4)2C2O4?

358. What is the name of KMnO4?

359. What is the name of Be(NO2)2?

360. What is the name of Cu(CN)2?

361. What is the name of AgBrO?

362. What is the name of (NH4)3PO4?

363. What is the name of Ni2(SO4)3?

364. What is the name of Pb(C2H3O2)2?

Writing Formulas of Binary Compounds

365–390 Give the chemical formula for the binary ionic compound.

365. What is the chemical formula for cesium chloride?

366. What is the chemical formula for indium(III) fluoride?

367. What is the chemical formula for magnesium oxide?

368. What is the chemical formula for barium bromide?

369. What is the chemical formula for potassium iodide?

370. What is the chemical formula for aluminum chloride?

371. What is the chemical formula for chromium(III) fluoride?

372. What is the chemical formula for iron(II) sulfide?

373. What is the chemical formula for copper(I) nitride?

374. What is the chemical formula for lead(II) oxide?

375. What is the chemical formula for nickel(I) selenide?

376. What is the chemical formula for silver oxide?

377. What is the chemical formula for strontium bromide?

378. What is the chemical formula for magnesium nitride?

379. What is the chemical formula for lithium hydride?

380. What is the chemical formula for zinc chloride?

381. What is the chemical formula for chromium(II) sulfide?

382. What is the chemical formula for manganese(II) selenide?

383. What is the chemical formula for tin(IV) fluoride?

384. What is the chemical formula for copper(I) iodide?

385. What is the chemical formula for nickel(III) phosphide?

386. What is the chemical formula for aluminum selenide?

387. What is the chemical formula for tin(IV) oxide?

388. What is the chemical formula for calcium phosphide?

389. What is the chemical formula for iron(III) oxide?

390. What is the chemical formula for manganese(IV) sulfide?

Writing Formulas of Compounds with ­Polyatomic Ions

391–420 Give the formula for the compound containing a polyatomic ion.

391. What is the chemical formula for rubidium hypochlorite?

392. What is the chemical formula for beryllium carbonate?

393. What is the chemical formula for aluminum phosphite?

394. What is the chemical formula for sodium hydrogen carbonate?

395. What is the chemical formula for sodium hydroxide?

396. What is the chemical formula for potassium hydrogen sulfate?

397. What is the chemical formula for lithium perchlorate?

398. What is the chemical formula for barium oxalate?

399. What is the chemical formula for chromium(III) arsenate?

400. What is the chemical formula for silver nitrate?

401. What is the chemical formula for lead(II) sulfite?

402. What is the chemical formula for thallium(I) bromite?

403. What is the chemical formula for gold(III) phosphate?

404. What is the chemical formula for iron(II) sulfate?

405. What is the chemical formula for calcium thiosulfate?

406. What is the chemical formula for sodium peroxide?

407. What is the chemical formula for ammonium nitrite?

408. What is the chemical formula for beryllium chlorite?

409. What is the chemical formula for sodium cyanide?

410. What is the chemical formula for magnesium permanganate?

411. What is the chemical formula for ammonium dichromate?

412. What is the chemical formula for cobalt(III) periodate?

413. What is the chemical formula for lead(IV) oxalate?

414. What is the chemical formula for calcium hydrogen phosphate?

415. What is the chemical formula for iron(III) acetate?

416. What is the chemical formula for potassium thiocyanate?

417. What is the chemical formula for copper(II) hydrogen sulfite?

418. What is the chemical formula for mercury(II) peroxide?

419. What is the chemical formula for gold(I) cyanate?

420. What is the chemical formula for aluminum dihydrogen phosphate?

Chapter 7

Covalent Bonding

In intro-level chemistry courses, most covalent compounds contain only nonmetals (elements to the right on the periodic table plus hydrogen). As with ionic compounds, the last word in the name of a covalent compound has an -ide suffix. Unlike ionic compounds, multiplying prefixes are typically present. For example, the compound S2Cl2 is disulfur dichloride, which uses the multiplying prefix di- twice. Organic compounds are another major group of covalent compounds, but they’re beyond the scope of this text.

The Problems You’ll Work On

In this chapter, you work with covalent bonding in the following ways:

Naming compounds containing covalent bonds

Writing formulas for covalent compounds

Note: You can go to the Appendix if you need to check the periodic table.

What to Watch Out For

Don’t let common mistakes trip you up; remember the following when working on covalent bonding:

The names of inorganic compounds normally consist of two words.

All simple binary compounds have an -ide suffix on the second word in the name.

The -ite and -ate suffixes normally don’t occur in covalent compounds.

The names of covalent compounds use multiplying prefixes, such as di-,tri-, tetra-, and penta-. The prefix mono- is rarely used anymore.

Acids follow their own rules for naming.

Prefixes in Covalent-­Compound Names

421–430 Review the prefixes associated with covalent compounds.

421. How many atoms does the prefix di- represent?

422. How many atoms does the prefix hexa- represent?

423. How many atoms does the prefix hepta- represent?

424. How many atoms does the prefix tetra- represent?

425. How many atoms does the prefix nona- represent?

426. How many atoms does the prefix tri- represent?

427. How many atoms does the prefix mono- represent?

428. How many atoms does the prefix penta- represent?

429. How many atoms does the prefix octa- represent?

430. How many atoms does the prefix deca- represent?

Naming Covalent Compounds

431–455 Provide the name of the specific covalent compound.

431. What is the name of CO?

432. What is the name of SBr2?

433. What is the name of ICl?

434. What is the name of SO2?

435. What is the name of PCl5?

436. What is the name of XeF2?

437. What is the name of SF6?

438. What is the name of CBr4?

439. What is the name of BCl3?

440. What is the name of SiO2?

441. What is the name of AsCl5?

442. What is the name of SbCl3?

443. What is the name of SiI4?

444. What is the name of NF3?

445. What is the name of CS2?

446. What is the name of ClO2?

447. What is the name of XeO4?

448. What is the name of H2O?

449. What is the name of SeF6?

450. What is the name of S2Cl2?

451. What is the name of N2O3?

452. What is the name of P4O6?

453. What is the name of B2Cl4?

454. What is the name of BrF3?

455. What is the name of S2F10?

Writing Formulas of Covalent Compounds

456–480 Give the chemical formulas of specific covalent compounds.

456. What is the chemical formula of silicon tetrabromide?

457. What is the chemical formula of nitrogen triiodide?

458. What is the chemical formula of carbon dioxide?

459. What is the chemical formula of arsenic pentafluoride?

460. What is the chemical formula of nitrogen monoxide?

461. What is the chemical formula of sulfur trioxide?

462. What is the chemical formula of chlorine monofluoride?

463. What is the chemical formula of xenon tetrafluoride?

464. What is the chemical formula of nitrogen dioxide?

465. What is the chemical formula of carbon tetrachloride?

466. What is the chemical formula of iodine heptafluoride?

467. What is the chemical formula of phosphorus tribromide?

468. What is the chemical formula of selenium tetrafluoride?

469. What is the chemical formula of chlorine dioxide?

470. What is the chemical formula of boron trifluoride?

471. What is the chemical formula of dinitrogen pentoxide?

472. What is the chemical formula of diphosphorus trioxide?

473. What is the chemical formula of dinitrogen dichloride?

474. What is the chemical formula of tetraphosphorus decoxide?

475. What is the chemical formula of arsenic trifluoride?

476. What is the chemical formula of dinitrogen oxide?

477. What is the chemical formula of tetraphosphorus trioxide?

478. What is the chemical formula of xenon trioxide?

479. What is the chemical formula of antimony pentachloride?

480. What is the chemical formula of dichlorine heptoxide?

Chapter 8

Molecular Geometry

The difference in the electronegativity between two atoms is an indicator of the polarity of the bond between the elements. The difference ranges from 0 to about 3, and the bond ranges from nonpolar to polar to ionic.

The position of an element on the periodic table indicates the number of valence electrons on an atom. The key to a Lewis dot diagram is the sum of the valence electrons of all atoms in a species plus electrons indicated by the charge on an anion (negative ion) or minus electrons indicated by the charge on a cation (positive ion). A correct diagram must indicate all of these electrons. The bonds and lone pairs around an atom in a Lewis dot diagram indicate the shape and polarity of the species.

The Problems You’ll Work On

In this chapter, you work with molecular geometry in the following ways:

Counting electrons in Lewis dot diagrams

Predicting bond types based on electronegativity values

Recognizing molecular shapes

Identifying polarity in bonds and molecules

Note: For access to the periodic table, see the Appendix.

What to Watch Out For

Remember the following when working on molecular geometry:

The Lewis structure must account for all valence electrons plus or minus electrons gained or lost to form ions.

Know the basic geometries and which geometries are inherently polar.

The bond between two different atoms is likely to be polar. Some bonds are so polar they’re ionic.