Concepts and Semantics of Programming Languages 2 - Therese Hardin - E-Book

Concepts and Semantics of Programming Languages 2 E-Book

Therese Hardin

0,0
139,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book - composed of two volumes - explores the syntactical constructs of the most common programming languages, and sheds a mathematical light on their semantics, providing also an accurate presentation of the material aspects that interfere with coding. Concepts and Semantics of Programming Languages 2 presents an original semantic model, collectively taking into account all of the constructs and operations of modules and classes: visibility, import, export, delayed definitions, parameterization by types and values, extensions, etc. The model serves for the study of Ada and OCaml modules, as well as C header files. It can be deployed to model object and class features, and is thus used to describe Java, C++, OCaml and Python classes. This book is intended not only for computer science students and teachers but also seasoned programmers, who will find a guide to reading reference manuals and the foundations of program verification.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 449

Veröffentlichungsjahr: 2021

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Foreword

Preface

1 Namespaces: Model and Operations

1.1. Reusing, dividing, confining

1.2. Namespaces

1.3.

kit

development

1.4. Incomplete

kits

1.5. Parameterized

kits

1.6. Functors of

kits

1.7.

kit

extension

1.8. Conclusion

2 Modules

2.1. Modules in Ada

2.2. Modules in OCaml

2.3. Modularity, namespaces and

W-kit

3 Class and Object Features

3.1. Object-oriented features

3.2.

kits

and object features

4 Classes in Selected Languages

4.1. Classes in Java

4.2. Classes in C++

4.3. Classes in OCaml

4.4. Presentation of Python

Appendix: Questions to Guide Learning

List of Notations

References

Index

End User License Agreement

List of Tables

Chapter 4

Table 4.1. Effects of marks

Table 4.2. Semantics of marks depending on the inheritance kind

Guide

Cover

Table of Contents

Title Page

Copyright

Foreword

Preface

Begin Reading

Appendix: Questions to Guide Learning

List of Notations

References

Index

End User License Agreement

Pages

v

iii

iv

ix

x

xi

xii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Series Editor

Jean-Charles Pomerol

Concepts and Semantics of Programming Languages 2

Modular and Object-oriented Constructs with OCaml, Python, C++, Ada and Java

Thérèse Hardin

Mathieu Jaume

François Pessaux

Véronique Viguié Donzeau-Gouge

First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd27-37 St George’s RoadLondon SW19 4EUUK

www.iste.co.uk

John Wiley & Sons, Inc.111 River StreetHoboken, NJ 07030USA

www.wiley.com

© ISTE Ltd 2021

The rights of Thérèse Hardin, Mathieu Jaume, François Pessaux and Véronique Viguié Donzeau-Gouge to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2021935827

British Library Cataloguing-in-Publication DataA CIP record for this book is available from the British LibraryISBN 978-1-78630-602-9

Foreword

Computer programs have played an increasingly central role in our lives since the 1940s, and the quality of these programs has thus become a crucial question. Writing a high-quality program – a program that performs the required task and is efficient, robust, easy to modify, easy to extend, etc. – is an intellectually challenging task, requiring the use of rigorous development methods. First and foremost, however, the creation of such a program is dependent on an in-depth knowledge of the programming language used, its syntax and, crucially, its semantics, i.e. what happens when a program is executed.

The description of this semantics puts the most fundamental concepts into light, including those of value, reference, exception or object. These concepts are the foundations of programming language theory. Mastering these concepts is what sets experienced programmers apart from beginners. Certain concepts – like that of value – are common to all programming languages; others – such as the notion of functions – operate differently in different languages; finally, other concepts – such as that of objects – only exist in certain languages. Computer scientists often refer to “programming paradigms” to consider sets of concepts shared by a family of languages, which imply a certain programming style: imperative, functional, object-oriented, logical, concurrent, etc. Nevertheless, an understanding of the concepts themselves is essential, as several paradigms may be interwoven within the same language.

Introductory texts on programming in any given language are not difficult to find, and a number of published books address the fundamental concepts of language semantics. Much rarer are those, like the present volume, which establish and examine the links between concepts and their implementation in languages used by programmers on a daily basis, such as C, C++, Ada, Java, OCaml and Python. The authors provide a wealth of examples in these languages, illustrating and giving life to the notions that they present. They propose general models, such as the kitpresented in Volume 2, permitting a unified view of different notions; this makes it easier for readers to understand the constructs used in popular programming languages and facilitates comparison. This thorough and detailed work provides readers with an understanding of these notions and, above all, an understanding of the ways of using the latter to create high-quality programs, building a safer and more reliable future in computing.

Gilles DOWEK

Research Director, InriaProfessor at the École normale supérieure, Paris-Saclay

Catherine DUBOIS

Professor at the École nationale supérieure d’informatique pour l’industrie et l’entreprise

January 2021

Preface

This two-volume work relates to the field of programming. First and foremost, it is intended to give readers a solid grounding in the bases of functional or imperative programming, along with a thorough knowledge of the module and class mechanisms involved. In our view, the semantics approach is most appropriate when studying programming, as the impact of interlanguage syntax differences is limited. Practical considerations, determined by the material characteristics of computers and/or “smart” devices, will also be addressed. The same approach will be taken in both volumes, using both mathematical formulas and memory state diagrams. With this book, we hope to help readers understand the meaning of the constructs described in the reference manuals of programming languages and to establish solid foundations for reasoning and assessing the correctness of their own programs through critical review. In short, our aim is to facilitate the development of safe and reliable software programs.

Volume 1 presented a broad overview of the functional and imperative features of programming, from notions that can be modeled mathematically to notions that are linked to the hardware configuration of computers themselves.

Volume 2 is dedicated to the study of language features (modules, classes, objects) that are known to ease the development of software systems. It builds on the foundations laid down in Volume 1 since modules, classes and objects are, in essence, the means of organizing functional or imperative constructs.

Chapter 1 first analyzes some of the needs of developers in terms of tools for building large software. Based on these requirements, an original semantic model is drawn up, jointly presenting all of the features of modules and classes that can meet these needs. We introduce our own structure, a kit, to describe this model, a word chosen to avoid any confusion with the usual denominations (structure, module, package, class, etc.) used by languages. These kits serve to explain naming management, export and import mechanisms, access restrictions, extension and parametrization (genericity, functors), subtyping and subclassing. In contrast to the mathematical study of semantics of functional and imperative features, the semantics of these kits remains rather informal, as research has not yet led to a relatively simple mathematical model. In this chapter, we have therefore prioritized intuition and simplicity, which inevitably leads to approximations and a lack of rigor, to some degree. Chapter 1 also proposes a set of questions to guide the acquisition of a language, with some answers given in the subsequent chapters. Chapter 2 first presents an implementation of kits with the modules of Ada and then a richer implementation of kits with the modules of OCaml. It ends with a much more succinct implementation of kits, referred to as weak kits, using the header files and the mechanisms of import–export of C. Chapter 3 takes up the kit model to handle classes and objects and their tools, for example inheritance, late binding and subclassing. This model is exemplified in Chapter 4, which presents the classes of Java, C++, OCaml and Python from a unified perspective.

This work is aimed at a relatively wide audience, from experienced developers – who will find valuable additional information on language semantics – to beginners who have only written short programs. For beginners, we recommend working on the semantic concepts described in Volume 1 using the implementations in OCaml or Python to ease assimilation. All readers may benefit from studying the reference manual of a programming language, while comparing the presentations of constructs given in the manual with those given here, guided by the questions mentioned in Volume 2.

Note that we do not discuss the algorithmic aspect of data processing here. However, choosing the algorithm and the data representation that fit the requirements of the specification is an essential step in program development. Many excellent works have been published on this subject, and we encourage readers to explore the subject further. We also recommend using the standard libraries provided by the chosen programming language. These libraries include tried and tested implementations for many different algorithms, which may generally be assumed to be correct.