Data Mining and Statistics for Decision Making - Stéphane Tufféry - E-Book

Data Mining and Statistics for Decision Making E-Book

Stéphane Tufféry

0,0
77,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives.

This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations.

 Key Features:

  • Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques.
  • Starts from basic principles up to advanced concepts.
  • Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software.
  • Gives practical tips for data mining implementation to solve real world problems.
  • Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring.
  • Supported by an accompanying website hosting datasets and user analysis.

Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1164

Veröffentlichungsjahr: 2011

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title

Copyright

Dedication

Preface

Foreword

Foreword from the French language edition

List of trademarks

Chapter 1: Overview of data mining

1.1 What is Data Mining?

1.2 What is Data Mining Used For?

1.3 Data Mining and Statistics

1.4 Data Mining and Information Technology

1.5 Data mining and Protection of Personal Data

1.6 Implementation of Data Mining

Chapter 2: The development of a data mining study

2.1 Defining the Aims

2.2 Listing the Existing Data

2.3 Collecting the Data

2.4 Exploring and Preparing the Data

2.5 Population Segmentation

2.6 Drawing up and Validating Predictive Models

2.7 Synthesizing Predictive Models of Different Segments

2.8 Iteration of the Preceding Steps

2.9 Deploying the Models

2.10 Training the Model Users

2.11 Monitoring the Models

2.12 Enriching the Models

2.13 Remarks

2.14 Life Cycle of a Model

2.15 Costs of a Pilot Project

Chapter 3: Data exploration and preparation

3.1 The Different Types of Data

3.2 Examining the Distribution of Variables

3.3 Detection of Rare or Missing Values

3.4 Detection of Aberrant Values

3.5 Detection of Extreme Values

3.6 Tests of Normality

3.7 Homoscedasticity and Heteroscedasticity

3.8 Detection of the Most Discriminating Variables

3.9 Transformation of Variables

3.10 Choosing Ranges of Values of binned Variables

3.11 Creating New Variables

3.12 Detecting Interactions

3.13 Automatic Variable Selection

3.14 Detection of Collinearity

3.15 Sampling

Chapter 4: Using commercial data

4.1 Data used in Commercial Applications

4.2 Special Data

4.3 Data Used by Business Sector

Chapter 5: Statistical and data mining software

5.1 Types of Data Mining and Statistical Software

5.2 Essential Characteristics of the Software

5.3 The Main Software Packages

5.4 Comparison of R, SAS and IBM SPSS

5.5 How to Reduce Processing Time

Chapter 6: An outline of data mining methods

6.1 Classification of the Methods

6.2 Comparison of the Methods

Chapter 7: Factor analysis

7.1 Principal Component Analysis

7.2 Variants of Principal Component Analysis

7.3 Correspondence Analysis

7.4 Multiple Correspondence Analysis

Chapter 8: Neural networks

8.1 General Information on Neural Networks

8.2 Structure of a Neural Network

8.3 Choosing the Learning Sample

8.4 Some Empirical Rules for Network Design

8.5 Data Normalization

8.6 Learning Algorithms

8.7 The Main Neural Networks

Chapter 9: Cluster analysis

9.1 Definition of Clustering

9.2 Applications of Clustering

9.3 Complexity of Clustering

9.4 Clustering Structures

9.5 Some Methodological Considerations

9.6 Comparison of Factor Analysis and Clustering

9.7 Within-cluster and between-cluster sum of squares

9.8 Measurements of Clustering Quality

9.9 Partitioning Methods

9.10 Agglomerative Hierarchical Clustering

9.11 Hybrid Clustering Methods

9.12 Neural Clustering

9.13 Clustering by similarity Aggregation

9.14 Clustering of Numeric Variables

9.15 Overview of Clustering Methods

Chapter 10: Association analysis

10.1 Principles

10.2 Using Taxonomy

10.3 Using Supplementary Variables

10.4 Applications

10.5 Example of Use

Chapter 11: Classification and prediction methods

11.1 Introduction

11.2 Inductive and Transductive Methods

11.3 Overview of Classification and Prediction Methods

11.4 Classification by Decision Tree

11.5 Prediction by Decision Tree

11.6 Classification by Discriminant Analysis

11.7 Prediction by Linear Regression

11.8 Classification by Logistic Regression

11.9 Developments in Logistic Regression

11.10 Bayesian Methods

11.11 Classification and Prediction By Neural Networks

11.12 Classification by Support Vector Machines

11.13 Prediction by Genetic Algorithms

11.14 Improving the Performance of a Predictive Model

11.15 Bootstrapping and ensemble methods

11.16 Using Classification and Prediction Methods

Chapter 12: An application of data mining: scoring

12.1 The Different types of Score

12.2 Using Propensity Scores and Risk Scores

12.3 Methodology

12.4 Implementing a Strategic Score

12.5 Implementing an Operational Score

12.6 Scoring Solutions used in a Business

12.7 An example of Credit Scoring (Data Preparation)

12.8 An Example of Credit Scoring (Modelling by Logistic Regression)

12.9 An Example of Credit Scoring (Modelling by DISQUAL discriminant analysis)

12.10 A Brief History of Credit Scoring

References

Chapter 13: Factors for success in a data mining project

13.1 The Subject

13.2 The People

13.3 The Data

13.4 The IT Systems

13.5 The Business Culture

13.6 Data Mining: Eight Common Misconceptions

13.7 Return on Investment

Chapter 14: Text mining

14.1 Definition of Text Mining

14.2 Text Sources Used

14.3 Using Text Mining

14.4 Information Retrieval

14.5 Information Extraction

14.6 Multi-type Data Mining

Chapter 15: Web mining

15.1 The Aims of Web Mining

15.2 Global Analyses

15.3 Individual Analyses

15.4 Personal Analysis

Appendix A: Elements of statistics

A.1 A Brief History

A.2 Elements of Statistics

A.3 Statistical Tables

Appendix B: Further reading

B.1. Statistics and Data Analysis

B.2. Data Mining and Statistical Learning

B.3. Text Mining

B.4. Web Mining

B.5. R Software

B.6. SAS Software

B.7. IBM SPSS Software

B.8. Websites

Index

End User License Agreement

Pages

cover

Contents

iii

iv

v

xvii

xviii

xix

xxi

xxii

xxiii

xxiv

xxv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

675

676

677

678

679

680

681

682

683

685

686

687

688

689

Guide

Cover

Table of Contents

Begin Reading

List of Illustrations

Chapter 1: Overview of data mining

Figure 1.1 The customer relationship circuit.

Figure 1.2 IT architecture for data mining.

Figure 1.3 Example of a decision tree generated by Answer Tree.

Figure 1.4 Example of SPSS code for a decision tree.

Figure 1.5 Example of SAS code generated by SAS Enterprise Miner.

Figure 1.6 Exporting a model into PMML in R software

Chapter 2: The development of a data mining study

Figure 2.1 Developing a predictive analysis base.

Figure 2.2 ROC curve.

Figure 2.3 Costs of a data mining project

Chapter 3: Data exploration and preparation

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!