77,99 €
Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives.
This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations.
Key Features:
Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1164
Veröffentlichungsjahr: 2011
Cover
Title
Copyright
Dedication
Preface
Foreword
Foreword from the French language edition
List of trademarks
Chapter 1: Overview of data mining
1.1 What is Data Mining?
1.2 What is Data Mining Used For?
1.3 Data Mining and Statistics
1.4 Data Mining and Information Technology
1.5 Data mining and Protection of Personal Data
1.6 Implementation of Data Mining
Chapter 2: The development of a data mining study
2.1 Defining the Aims
2.2 Listing the Existing Data
2.3 Collecting the Data
2.4 Exploring and Preparing the Data
2.5 Population Segmentation
2.6 Drawing up and Validating Predictive Models
2.7 Synthesizing Predictive Models of Different Segments
2.8 Iteration of the Preceding Steps
2.9 Deploying the Models
2.10 Training the Model Users
2.11 Monitoring the Models
2.12 Enriching the Models
2.13 Remarks
2.14 Life Cycle of a Model
2.15 Costs of a Pilot Project
Chapter 3: Data exploration and preparation
3.1 The Different Types of Data
3.2 Examining the Distribution of Variables
3.3 Detection of Rare or Missing Values
3.4 Detection of Aberrant Values
3.5 Detection of Extreme Values
3.6 Tests of Normality
3.7 Homoscedasticity and Heteroscedasticity
3.8 Detection of the Most Discriminating Variables
3.9 Transformation of Variables
3.10 Choosing Ranges of Values of binned Variables
3.11 Creating New Variables
3.12 Detecting Interactions
3.13 Automatic Variable Selection
3.14 Detection of Collinearity
3.15 Sampling
Chapter 4: Using commercial data
4.1 Data used in Commercial Applications
4.2 Special Data
4.3 Data Used by Business Sector
Chapter 5: Statistical and data mining software
5.1 Types of Data Mining and Statistical Software
5.2 Essential Characteristics of the Software
5.3 The Main Software Packages
5.4 Comparison of R, SAS and IBM SPSS
5.5 How to Reduce Processing Time
Chapter 6: An outline of data mining methods
6.1 Classification of the Methods
6.2 Comparison of the Methods
Chapter 7: Factor analysis
7.1 Principal Component Analysis
7.2 Variants of Principal Component Analysis
7.3 Correspondence Analysis
7.4 Multiple Correspondence Analysis
Chapter 8: Neural networks
8.1 General Information on Neural Networks
8.2 Structure of a Neural Network
8.3 Choosing the Learning Sample
8.4 Some Empirical Rules for Network Design
8.5 Data Normalization
8.6 Learning Algorithms
8.7 The Main Neural Networks
Chapter 9: Cluster analysis
9.1 Definition of Clustering
9.2 Applications of Clustering
9.3 Complexity of Clustering
9.4 Clustering Structures
9.5 Some Methodological Considerations
9.6 Comparison of Factor Analysis and Clustering
9.7 Within-cluster and between-cluster sum of squares
9.8 Measurements of Clustering Quality
9.9 Partitioning Methods
9.10 Agglomerative Hierarchical Clustering
9.11 Hybrid Clustering Methods
9.12 Neural Clustering
9.13 Clustering by similarity Aggregation
9.14 Clustering of Numeric Variables
9.15 Overview of Clustering Methods
Chapter 10: Association analysis
10.1 Principles
10.2 Using Taxonomy
10.3 Using Supplementary Variables
10.4 Applications
10.5 Example of Use
Chapter 11: Classification and prediction methods
11.1 Introduction
11.2 Inductive and Transductive Methods
11.3 Overview of Classification and Prediction Methods
11.4 Classification by Decision Tree
11.5 Prediction by Decision Tree
11.6 Classification by Discriminant Analysis
11.7 Prediction by Linear Regression
11.8 Classification by Logistic Regression
11.9 Developments in Logistic Regression
11.10 Bayesian Methods
11.11 Classification and Prediction By Neural Networks
11.12 Classification by Support Vector Machines
11.13 Prediction by Genetic Algorithms
11.14 Improving the Performance of a Predictive Model
11.15 Bootstrapping and ensemble methods
11.16 Using Classification and Prediction Methods
Chapter 12: An application of data mining: scoring
12.1 The Different types of Score
12.2 Using Propensity Scores and Risk Scores
12.3 Methodology
12.4 Implementing a Strategic Score
12.5 Implementing an Operational Score
12.6 Scoring Solutions used in a Business
12.7 An example of Credit Scoring (Data Preparation)
12.8 An Example of Credit Scoring (Modelling by Logistic Regression)
12.9 An Example of Credit Scoring (Modelling by DISQUAL discriminant analysis)
12.10 A Brief History of Credit Scoring
References
Chapter 13: Factors for success in a data mining project
13.1 The Subject
13.2 The People
13.3 The Data
13.4 The IT Systems
13.5 The Business Culture
13.6 Data Mining: Eight Common Misconceptions
13.7 Return on Investment
Chapter 14: Text mining
14.1 Definition of Text Mining
14.2 Text Sources Used
14.3 Using Text Mining
14.4 Information Retrieval
14.5 Information Extraction
14.6 Multi-type Data Mining
Chapter 15: Web mining
15.1 The Aims of Web Mining
15.2 Global Analyses
15.3 Individual Analyses
15.4 Personal Analysis
Appendix A: Elements of statistics
A.1 A Brief History
A.2 Elements of Statistics
A.3 Statistical Tables
Appendix B: Further reading
B.1. Statistics and Data Analysis
B.2. Data Mining and Statistical Learning
B.3. Text Mining
B.4. Web Mining
B.5. R Software
B.6. SAS Software
B.7. IBM SPSS Software
B.8. Websites
Index
End User License Agreement
cover
Contents
iii
iv
v
xvii
xviii
xix
xxi
xxii
xxiii
xxiv
xxv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
675
676
677
678
679
680
681
682
683
685
686
687
688
689
Cover
Table of Contents
Begin Reading
Chapter 1: Overview of data mining
Figure 1.1 The customer relationship circuit.
Figure 1.2 IT architecture for data mining.
Figure 1.3 Example of a decision tree generated by Answer Tree.
Figure 1.4 Example of SPSS code for a decision tree.
Figure 1.5 Example of SAS code generated by SAS Enterprise Miner.
Figure 1.6 Exporting a model into PMML in R software
Chapter 2: The development of a data mining study
Figure 2.1 Developing a predictive analysis base.
Figure 2.2 ROC curve.
Figure 2.3 Costs of a data mining project
Chapter 3: Data exploration and preparation
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!