139,99 €
The omnipresence of electronic devices in our everyday lives has been accompanied by the downscaling of chip feature sizes and the ever increasing complexity of digital circuits. This book is devoted to the analysis and design of digital circuits, where the signal can assume only two possible logic levels. It deals with the basic principles and concepts of digital electronics. It addresses all aspects of combinational logic and provides a detailed understanding of logic gates that are the basic components in the implementation of circuits used to perform functions and operations of Boolean algebra. Combinational logic circuits are characterized by outputs that depend only on the actual input values. Efficient techniques to derive logic equations are proposed together with methods of analysis and synthesis of combinational logic circuits. Each chapter is well structured and is supplemented by a selection of solved exercises covering logic design practices.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 213
Veröffentlichungsjahr: 2016
Cover
Title
Copyright
Preface
1. Summary
2. The reader
1 Number Systems
1.1. Introduction
1.2. Decimal numbers
1.3. Binary numbers
1.4. Octal numbers
1.5. Hexadecimal numeration
1.6. Representation in a radix B
1.7. Binary-coded decimal numbers
1.8. Representations of signed integers
1.9. Representation of the fractional part of a number
1.10. Arithmetic operations on binary numbers
1.11. Representation of real numbers
1.12. Data representation
1.13. Codes to protect against errors
1.14. Exercises
1.15. Solutions
2 Logic Gates
2.1. Introduction
2.2. Logic gates
2.3. Three-state buffer
2.4. Logic function
2.5. The correspondence between a truth table and a logic function
2.6. Boolean algebra
2.7. Multi-level logic circuit implementation
2.8. Practical considerations
2.9. Demonstration of some Boolean algebra identities
2.10. Exercises
2.11. Solutions
3 Function Blocks of Combinational Logic
3.1. Introduction
3.2. Multiplexer
3.3. Demultiplexer and decoder
3.4. Implementation of logic functions using multiplexers or decoders
3.5. Encoders
3.6. Transcoders
3.7. Parity check generator
3.8. Barrel shifter
3.9. Exercises
3.10. Solutions
4 Systematic Methods for the Simplification of Logic Functions
4.1. Introduction
4.2. Definitions and reminders
4.3. Karnaugh maps
4.4. Systematic methods for simplification
4.5. Exercises
4.6. Solutions
Bibliography
Index
End User License Agreement
1 Number Systems
Table 1.1.
Conversion tables for 0 numbers to 15
Table 1.2.
Representations of unsigned and signed 3-bit integers
Table 1.3.
Range of numbers that can be represented with the IEEE-754 standard
Table 1.4.
Number format based on the IEEE-754 standard
Table 1.5.
Values of numbers in IEEE-754 representations
Table 1.6.
Binary and Gray code representation of decimal numbers from
0
to
15
Table 1.7.
Examples of 2 -out-of-5 code
Table 1.8.
ASCII codes table
2 Logic Gates
Table 2.1.
Truth table. Input: A; Output: B
Table 2.2.
Truth table. Inputs: A, B; Output: C
Table 2.3.
Truth table. Inputs: A, B; output: C
Table 2.4.
Truth table. Inputs: A, B; Output: C
Table 2.5.
Truth table
Table 2.6.
Truth table (sum of products)
Table 2.7.
Truth table (product of sums)
Table 2.8.
Truth table (sum of products)
Table 2.9.
Basic properties for the NOT, AND and OR operations
Table 2.10.
Truth table
Table 2.11.
Truth table for
Table 2.12.
Truth table for and
Table 2.13.
Basic properties for the XOR and XNOR operations
Table 2.14.
Truth table
Table 2.15.
Truth table
3 Function Blocks of Combinational Logic
Table 3.1.
Truth table of the 2-to-1 multiplexer
Table 3.2.
Truth table of a 2:1 multiplexer
Table 3.3.
Truth table of a 2-to-1 multiplexer
Table 3.4.
Truth table for the multiplexer shown in Figure 3.6(a)
Table 3.5.
Truth table for the multiplexer shown in Figure 3.6(b)
Table 3.6.
Truth table for an 8-to-1 multiplexer
Table 3.7.
Truth table for the decoder
Table 3.8.
Truth table for the decoder
Table 3.9.
Truth table of a 1-to-2 demultiplexer
Table 3.10.
Truth table of the 1-to-2 demultiplexer
Table 3.11.
Truth table of a 2-out-of-4 decoder
Table 3.12.
Truth table of a 1-to-4 demultiplexer
Table 3.13.
Truth table for an 1-to-8 demultiplexer
Table 3.14.
Truth table for the logic function Y
Table 3.15.
Truth table (case 1)
Table 3.16.
Truth table (case 2)
Table 3.17.
Truth table of the 4 : 2 encoder with a validation output
Table 3.18.
Truth table for an 8 : 3 encoder
Table 3.19.
Truth table for a 4:2 priority encoder
Table 3.20.
Truth table for 4 : 2 priority encoder with cascading capability
Table 3.21.
Truth table for the 8 : 3 priority encoder
Table 3.22.
Conversion of decimal numbers from 0 to 9 into binary representation
Table 3.23.
Truth table for the priority encoder 74LS147
Table 3.24.
Binary and Gray code for numbers from 0 to 15
Table 3.25.
BCD to XS-3 conversion table
Table 3.26.
BCD to XS-3 conversion table
Table 3.27.
Example of three 8-bit words with parity bits
Table 3.28.
Truth table for a parity generator for 4-bit words
Table 3.29.
Table illustrating the operation of the parity generator/controller
Table 3.30.
Operations realized by the barrel shifter
Table 3.31.
Truth table of the barrel shifter
Table 3.32.
Truth table of the 4-bit barrel shifter
Table 3.33.
Truth table of the function F
(
A
,
B
,
C
)
Table 3.34.
Truth table of the 2-out-of-4 decoder
Table 3.35.
Truth table of the 2-out-of-2 decoder
Table 3.36.
Truth table of the
8 : 3
priority encoder
Table 3.37.
Truth table of the logic function F
Table 3.38.
Truth table of the 2-out-of-4 decoder
Table 3.39.
Truth table of the 1-to-4 demultiplexer
Table 3.40.
Truth table
Table 3.41.
Truth table
Table 3.42.
Truth table of the 8-to-1 multiplexer
Table 3.43.
Truth table
Table 3.44.
Truth table of a multiplier for 2-bit words
Table 3.45.
Truth table of a comparator for 2-bit numbers
Table 3.46.
Truth table of the BCD-to-7-segment decoder
Table 3.47.
Truth table of the HEX-to-7-segment decoder
Table 3.48.
Truth table of the barrel shifter
Table 3.49.
Truth table of the barrel shifter for right-shift operations
4 Systematic Methods for the Simplification of Logic Functions
Table 4.1.
Truth table
Table 4.2.
Table to determine prime implicants
Table 4.3.
Table to determine the prime implicants using the consensus theorem
Table 4.4.
Prime implicant chart for F
Table 4.5.
Table for the determination of prime implicants
Table 4.6.
Prime implicant chart for F: a) complete form and b) reduced form
Table 4.7.
Table for the determination of prime implicants
Table 4.8.
Prime implicant chart for F
Table 4.9.
Reduced forms of the prime implicant charts for
F
Table 4.10.
Table for the determination of prime implicants
Table 4.11.
Prime implicant chart for F
Table 4.12.
Table for the determination of prime implicants
Table 4.13.
Prime implicants chart for F
Table 4.14.
Table for the determination of prime implicants
Table 4.15.
Table for the determination of prime implicants using the consensus method
Table 4.16.
Prime implicant chart for the functions
F
,
G
and
F
·
G
Table 4.17.
Reduced form of the prime implicant chart for the functions
F
,
G
and
F
· G
Table 4.18.
Table for the determination of the prime implicants of Z
1
Table 4.19.
Prime implicant chart for Z
1
Table 4.20.
Table for the determination of the prime implicants of Z
2
Table 4.21.
Prime implicant chart for Z
2
Table 4.22.
Table for the determination of the prime implicants of Z
3
Table 4.23.
Prime implicant chart for Z
3
Table 4.24.
Reduced prime implicant chart for Z
3
Table 4.25.
Table for the determination of the prime implicants of Z
4
Table 4.26.
Prime implicant chart for Z
4
Cover
Table of Contents
Begin Reading
C1
iii
iv
v
ix
x
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
257
258
259
260
261
G1
G2
G3
G4
Series EditorRobert Baptist
Tertulien Ndjountche
First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:
ISTE Ltd
27-37 St George’s Road
London SW19 4EU
UK
www.iste.co.uk
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
www.wiley.com
© ISTE Ltd 2016
The rights of Tertulien Ndjountche to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
Library of Congress Control Number: 2016939642
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-984-7
The omnipresence of electronic devices in everyday life is accompanied by the decreasing size and the ever-increasing complexity of digital circuits. This comprehensive and easy-to-understand work deals with the basic principles of digital electronics and allows the reader to grasp the subtleties of digital circuits, from logic gates to finite-state machines. It presents all the aspects related to combinational logic and sequential logic. It introduces techniques for simply and concisely establishing logic equations as well as methods for the analysis and design of digital circuits. Emphasis has been especially laid on design approaches that can be used to ensure a reliable operation of finite-state machines. Various programmable logic circuit structures and their applications have also been presented. Each chapter is completed by practical examples and well-designed exercises that are accompanied by worked solutions.
