Electrical Phenomena at Interfaces and Biointerfaces - Hiroyuki Ohshima - E-Book

Electrical Phenomena at Interfaces and Biointerfaces E-Book

Hiroyuki Ohshima

0,0
177,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book bridges three different fields: nanoscience, bioscience, and environmental sciences. It starts with fundamental electrostatics at interfaces and includes a detailed description of fundamental theories dealing with electrical double layers around a charged particle, electrokinetics, and electrical double layer interaction between charged particles. The stated fundamentals are provided as the underpinnings of sections two, three, and four, which address electrokinetic phenomena that occur in nanoscience, bioscience, and environmental science. Applications in nanomaterials, fuel cells, electronic materials, biomaterials, stems cells, microbiology, water purificiaion, and humic substances are discussed.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1221

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title page

Copyright page

PREFACE

CONTRIBUTORS

PART I: FUNDAMENTALS

1 POTENTIAL AND CHARGE OF A HARD PARTICLE AND A SOFT PARTICLE

1.1 INTRODUCTION

1.2 THE POISSON–BOLTZMANN EQUATION

1.3 LOW POTENTIAL CASE

1.4 ARBITRARY POTENTIAL CASE

1.5 SOFT PARTICLES

2 ELECTROSTATIC INTERACTION BETWEEN TWO COLLOIDAL PARTICLES

2.1 INTRODUCTION

2.2 INTERACTION BETWEEN TWO COLLOIDAL PARTICLES: LOW POTENTIAL CASE

2.3 LINEAR SUPERPOSITION APPROXIMATION (LSA)

3 THE DERJAGUIN–LANDAU–VERWEY–OVERBEEK (DLVO) THEORY OF COLLOID STABILITY

3.1 INTRODUCTION

3.2 THE VAN DER WAALS INTERACTION BETWEEN MOLECULES

3.3 THE VAN DER WAALS INTERACTION BETWEEN PARTICLES

3.4 DLVO THEORY OF COLLOID STABILITY

4 ELECTROPHORETIC MOBILITY OF CHARGED PARTICLES

4.1 INTRODUCTION

4.2 GENERAL THEORY OF ELECTROPHORETIC MOBILITY OF HARD PARTICLES

4.3 SMOLUCHOWSKI’S, HÜCKEL’S, AND HENRY’S EQUATIONS

4.4 MOBILITY EQUATIONS TAKING INTO ACCOUNT THE RELAXATION EFFECT

4.5 ELECTROPHORETIC MOBILITY OF SOFT PARTICLES

5 ELECTROPHORETIC MOBILITY OF GOLD NANOPARTICLES

5.1 INTRODUCTION

5.2 ELECTROPHORETIC MOBILITY–ZETA POTENTIAL RELATIONSHIP

5.3 ZETA POTENTIAL–SURFACE CHARGE DENSITY RELATIONSHIP

5.4 ELECTROPHORETIC MOBILITY–SURFACE CHARGE DENSITY RELATIONSHIP

5.5 ANALYSIS OF ELECTROPHORETIC MOBILITY OF GOLD NANOPARTICLES

6 ELECTROPHORESIS OF SOFT PARTICLES IN A CONFINED SPACE

6.1 INTRODUCTION

6.2 ELECTROPHORESIS OF A SOFT PARTICLE

6.3 ELECTROPHORESIS OF A SOFT PARTICLE IN A CONFINED SPACE

6.4 SPECIAL CASE OF LOW SURFACE POTENTIAL

6.5 CONCLUSIONS

6.6 NOMENCLATURE

7 SURFACE CONDUCTIVITY

7.1 INTRODUCTION

7.2 SURFACE CONDUCTIVITY OF HARD SURFACES

7.3 SURFACE CONDUCTIVITY OF SOFT SURFACES

7.4 SUMMARY

8 COMPUTER SIMULATIONS OF CHARGED COLLOIDS: 1. MESOSCOPIC MODELING

8.1 INTRODUCTION

8.2 DYNAMICS OF AN ELECTROLYTE SOLVENT AND COLLOIDS

8.3 COMPUTATIONAL METHOD: SPM

8.4 RESULTS AND DISCUSSION

8.5 A SOFTWARE FOR ELECTROKINETICS OF COLLOIDAL DISPERSIONS: KAPSEL

8.6. SUMMARY

9 COMPUTER SIMULATIONS OF CHARGED COLLOIDS: 2. ELECTROPHORESIS AND SEDIMENTATION

9.1 INTRODUCTION

9.2 NUMERICAL CALCULATIONS

9.3 SUMMARY

10 ELECTROSTATIC AND STERIC STABILIZATION OF COLLOIDAL DISPERSIONS

10.1 INTRODUCTION

10.2 INTERACTION FORCES BETWEEN PARTICLES IN COLLOIDAL DISPERSIONS

10.3 ELECTROSTATIC STABILIZATION

10.4 STERIC STABILIZATION

10.5 ELECTROSTERIC STABILIZATION

10.6 FLOCCULATION OF DISPERSIONS AND ITS PREVENTION

10.7 MECHANISM OF FLOCCULATION

10.8 WEAK FLOCCULATION

10.9 DEPLETION FLOCCULATION

10.10 INCIPIENT FLOCCULATION

10.11 BRIDGING OR CHARGE NEUTRALIZATION BY POLYMERS

10.12 GENERAL RULES FOR REDUCING (ELIMINATING) FLOCCULATION

11 AGGREGATION KINETICS OF COLLOIDAL PARTICLES

11.1 INTRODUCTION

11.2 POPULATION BALANCE EQUATION

11.3 AGGREGATION DUE TO BROWNIAN MOTION

11.4 AGGREGATION IN FLOW FIELDS

12 ELECTROACOUSTIC THEORIES AND MEASUREMENT TECHNIQUES

12.1 INTRODUCTION

12.2 HISTORICAL BACKGROUND

12.3 THEORY OF THE CVI IN CONCENTRATED SYSTEMS

12.4 INSTRUMENT FOR MEASURING CVI

12.5 MEASUREMENT TECHNIQUES

13 COLLOID VIBRATION POTENTIAL AND ION VIBRATION POTENTIAL IN SURFACTANT SOLUTIONS

13.1 INTRODUCTION

13.2 THEORETICAL BACKGROUND OF ULTRASONIC VIBRATION POTENTIAL

13.3 ULTRASONIC VIBRATION CURRENT IN SURFACTANT SOLUTIONS

13.4 CONCLUSION

14 INTERFACIAL TENSION OF AQUEOUS ELECTROLYTE SOLUTIONS: ION-FREE LAYER

14.1 INTRODUCTION

14.2 THEORETICAL CONSIDERATION ON INTERFACIAL TENSION OF AQUEOUS ELECTROLYTE SOLUTIONS

14.3 EXPERIMENTAL RESULTS OF INTERFACIAL TENSION OF AQUEOUS ELECTROLYTE SOLUTIONS

14.4 CONCLUSION

PART II: APPLICATIONS IN NANO- AND ENVIRONMENTAL SCIENCES

15 BROADBAND DIELECTRIC SPECTROSCOPY ON ELECTRODE POLARIZATION AND ITS SCALING

15.1 INTRODUCTION

15.2 EXPERIMENTAL

15.3 CHARGE TRANSPORT PROPERTIES IN THE BULK

15.4 ELECTRODE POLARIZATION EFFECTS IN DIELECTRIC SPECTRA: EXPERIMENTAL FEATURES

15.5 SUMMARY OF THE EXPERIMENTAL RESULTS

15.6 ELECTRODE POLARIZATION AND CHARGE TRANSPORT AT SOLID INTERFACES

15.7 THE PHYSICAL SIGNIFICANCE OF fon AND fmax

15.8 THE DIELECTRIC FUNCTION OF THE INTERFACIAL LAYERS

15.9 FINAL CONCLUSIONS

16 LAYER-BY-LAYER ASSEMBLY ON STIMULI-RESPONSIVE MICROGELS

16.1 INTRODUCTION

16.2 MICROGELS

16.3 STABILITY OF LBL-COATED MICROGELS

16.4 PROOF OF LBL COATING ON MICROGELS

16.5 NANOPARTICLE–MICROGEL HYBRID

16.6 CLOSING REMARKS AND OUTLOOK

ACKNOWLEDGMENT

17 DYNAMICS OF POLYMERS AND POLYELECTROLYTES AT COLLOIDAL INTERFACE AND SUBSEQUENT FLOCCULATION

17.1 INTRODUCTION

17.2 MECHANISMS OF FLOCCULATION INDUCED WITH WATER-SOLUBLE POLYMERS AND POLYELECTROLYTES

17.3 ANALYSIS OF FLOCCULATION DYNAMICS BY MEANS OF THE STANDARDIZED COLLISION PROCESS

17.4 REMARKS FOR FUTURE WORK

ACKNOWLEDGMENTS

18 COLLOIDAL PARTICLE PROCESSING USING HETEROCOAGULATION

18.1 INTRODUCTION

18.2 RAPID SEPARATION OF ULTRAFINE PARTICLES FROM DILUTED SUSPENSION

18.3 RAPID SEPARATION OF BACTERIAL CELLS FROM A STABLE DISPERSION BY HETEROCOAGULATION TO A FIBROUS COLLECTOR

18.4 RAPID SEPARATION OF OIL PARTICLES FROM LOW-CONCENTRATION OIL-IN-WATER (O/W) EMULSIONS IN THE PRESENCE OF ANIONIC SURFACTANTS

18.5 RAPID ULTRAFINE PARTICLE PROCESSING (SIZE CLASSIFICATION AND MUTUAL SEPARATION) USING SURFACE CHARACTERISTICS

18.6 MUTUAL SEPARATION OF ULTRAFINE SILICA AND HEMATITE PARTICLES FROM SUSPENSION USING SURFACE CHARACTERISTICS

19 ELECTROKINETIC COUPLING IN COLLOIDAL ARRAYS FORMED UNDER AC ELECTRIC FIELDS

19.1 INTRODUCTION

19.2 ION CONCENTRATION POLARIZATION OF EDL

19.3 HIERARCHICAL ARRAYS OF COLLOIDAL PARTICLES UNDER AN AC ELECTRIC FIELD

19.4 IN SITU CONDUCTANCE MEASUREMENTS FOR COLLOIDAL ARRAYS

19.5 ELECTROKINETIC COUPLING IN PEARL CHAIN FORMATION

ACKNOWLEDGMENTS

APPENDIX

20 SIZE DISTRIBUTION MEASUREMENTS OF FINE PARTICLES USING THEIR PEARL CHAIN FORMATIONS UNDER A DC ELECTRIC FIELD

20.1 INTRODUCTION

20.2 METHODOLOGY

20.3 CASE STUDIES

21 ANALYSIS OF FUNCTIONAL GROUPS AT BURIED LIQUID/SOLID INTERFACES UTILIZING POLARIZATION MODULATION INFRARED EXTERNAL REFLECTION SPECTROSCOPY

22 FABRICATION OF LIQUID CRYSTAL DISPLAYS CONTAINING CAPPED NANOPARTICLES AND THEIR ELECTRO-OPTIC PROPERTIES

22.1 INTRODUCTION

22.2 MONOMETALLIC NANOPARTICLES

22.3 BIMETALLIC NANOPARTICLES

ACKNOWLEDGMENTS

23 FABRICATION OF ORDERED NANOPATTERN STRUCTURES USING TWO-DIMENSIONAL COLLOIDAL MONOLAYERS

23.1 INTRODUCTION

23.2 WETTABILITY CONTROL BY PERIODIC SURFACE ROUGHNESS OF THE COLLOIDAL MONOLAYER

23.3 TEMPLATE FOR HOLLOW SHELLS

23.4 NANOSPHERE LITHOGRAPHY

23.5 TEMPLATE FOR HONEYCOMB FILM

23.6 COLLOIDAL MONOLAYER ON A LIQUID SURFACE

23.7 CONCLUSION

24 LIQUID-PHASE SYNTHESIS OF CARBON NANOTUBES AND OTHER CARBON NANOMATERIALS

24.1 INTRODUCTION

24.2 GAS-PHASE SYNTHETIC METHODS OF CNTS

24.3 LIQUID-PHASE SYNTHESIS

24.4 FUTURE OF LIQUID-PHASE SYNTHESIS

25 OXIDE CATHODE ELECTROCATALYSTS FOR FUEL CELLS

25.1 INTRODUCTION

25.2 PYROCHLORE-TYPE OXIDES

25.3 METAL OXIDE NANOSHEET-BASED MATERIALS

25.4 APPLICATION OF OXIDE-BASED CATALYSTS TO THE AMFC CATHODE

25.5 SUMMARY AND PERSPECTIVES

ACKNOWLEDGMENTS

26 DYNAMICS AND STRUCTURE OF WATER NANOTUBE CLUSTERS CONFINED TO NANOPOROUS MOLECULAR CRYSTALS

ACKNOWLEDGMENTS

27 SURFACE ELECTROCHEMISTRY OF ELECTROSPUN NANOFIBERS

27.1 INTRODUCTION

27.2 ION-EXCHANGE NANOFIBERS BY ELECTROSPINNING

27.3 ELECTROKINETIC CHARACTERIZATION OF BIOLOGICAL ION-EXCHANGE NANOFIBERS

27.4 CATALYTIC EFFECT OF SYNTHETIC ION-EXCHANGE NANOFIBERS

27.5 SUMMARY AND FUTURE DIRECTIONS

28 SHAVE-OFF PROFILING AS A NANOSCALE 3-D ELEMENT IMAGING TECHNIQUE

28.1 INTRODUCTION

28.2 SHAVE-OFF PROFILING

28.3 CONCLUDING REMARKS

ACKNOWLEDGMENTS

29 INTERFACIAL CHARGE STORAGE OF MANGANESE OXIDE ELECTRODES FOR ELECTROCHEMICAL CAPACITORS

29.1 MANGANESE OXIDES FOR ELECTROCHEMICAL DEVICES

29.2 SYNTHESIS OF MANGANESE DIOXIDES AND THEIR APPLICATION IN CAPACITORS

29.3 MANGANESE OXIDE-BASED SUPERCAPACITORS

29.4 ELECTROLYTE ADDITIVES FOR THE CAPACITOR

29.5 CONCLUSIONS AND OUTLOOK

30 SURFACE FUNCTIONALIZATION OF DIAMOND ELECTRODES

30.1 INTRODUCTION

30.2 SURFACE MODIFICATION OF DIAMOND ELECTRODE WITH COVALENT MOLECULAR MONOLAYER

30.3 ELECTROANALYTICAL APPLICATIONS OF SURFACE-MODIFIED DIAMOND ELECTRODES

30.4 CONCLUSION

31 QUANTUM ELECTROCHEMICAL STUDY OF BENZENE DERIVATIVES: 1. ELECTRONIC STRUCTURE AND EVALUATION OF THE ANTIOXIDANT ACTIVITY OF ASPIRIN AND PARACETAMOL

31.1 INTRODUCTION

31.2 EXPERIMENTAL

31.3 THEORETICAL BACKGROUND

31.4 COMPUTATIONAL DETAILS

31.5 RESULTS AND DISCUSSION

31.6 CONCLUSION

32 QUANTUM ELECTROCHEMICAL STUDY OF BENZENE DERIVATIVES: 2. ANALYSIS OF X-RAY PHOTOELECTRON SPECTRA OF ELECTROCHEMICALLY PREPARED POLYANILINE BY DFT CALCULATIONS USING MODEL MOLECULES

32.1 INTRODUCTION

32.2 EXPERIMENTAL

32.3 THEORETICAL BACKGROUND

32.4 CALCULATIONS

32.5 RESULT AND DISCUSSION

32.6 CONCLUSIONS

33 SYNTHESIS AND SOLUTION PROPERTIES OF FLUOROCARBON–HYDROCARBON HYBRID SURFACTANTS

33.1 INTRODUCTION

33.2 SYNTHESIS AND BASIC SOLUTION PROPERTIES OF NEW HYBRID SURFACTANTS

33.3 BASIC SOLUTION PROPERTIES OF HYBRID SURFACTANTS

33.4 APPLICATIONS OF HYBRID SURFACTANTS

33.5 UNUSUAL PROPERTIES OF HYBRID SURFACTANTS

33.6 CONCLUSION

34 ELECTROCHEMICAL DYNAMIC CONTROL OF SELF-ASSEMBLIES FORMED BY REDOX-ACTIVE SURFACTANTS

34.1 INTRODUCTION

34.2 REVERSIBLE CONTROL OF VESICLE FORMATION USING A REDOX REACTION

34.3 REVERSIBLE CONTROL OF VISCOELASTICITY USING A REDOX REACTION

34.4 CONCLUSIONS

35 PHOTOINDUCED MANIPULATION OF SELF-ORGANIZED NANOSTRUCTURE OF BLOCK COPOLYMERS

35.1 INTRODUCTION

35.2 SYNTHESIS

35.3 PHASE BEHAVIOR

35.4 PHASE BEHAVIOR OF COPOLYMER/HOMOPOLYMER BLENDS

35.5 THIN-FILM MORPHOLOGY

35.6 MANIPULATION OF MORPHOLOGIES BY EXTERNAL STIMULI

35.7 PHOTOCONTROL OF MICROPHASE SEPARATIONS

36 APPLICATIONS OF ELECTRICAL PHENOMENA IN MEMBRANES AND MEMBRANE SEPARATION PROCESSES

36.1 INTRODUCTION

36.2 PRESSURE DROP AND SP IN THE MEMBRANE FILTRATION PROCESS

36.3 MEASUREMENT OF SP

36.4 APPLICATION OF THE ZETA POTENTIAL TO THE CHARACTERIZATION OF MEMBRANE FOULING

36.5 APPLICATION OF SP TO THE CHARACTERIZATION OF PORE SIZE AND SURFACE CHARGE DENSITY OF MF/UF MEMBRANES

36.6 CONCLUSIONS

NOMENCLATURE

PART III: APPLICATIONS IN BIOSCIENCES

37 DIELECTRIC DISPERSION IN COLLOIDAL SYSTEMS: APPLICATIONS IN THE BIOLOGICAL SCIENCES

37.1 INTRODUCTION

37.2 BASIS OF THE DIELECTRIC PHENOMENA IN COLLOIDAL SYSTEMS

37.3 THE DIELECTRIC DISPERSION MEASUREMENT

37.4 APPLICATION TO BIOLOGICAL SYSTEMS

37.5 CONCLUDING REMARKS

ACKNOWLEDGMENT

38 ELECTROKINETIC METHODS IN BIOLOGICAL INTERFACES: POSSIBILITIES AND LIMITATIONS

38.1 INTRODUCTION

38.2 SPECIAL FEATURES OF BIOLOGICAL INTERFACES

38.3 ELECTROKINETICS OF PARTICLES WITH SOFT INTERFACES

38.4 APPLICATIONS

38.5 THE CASE OF ARTIFICIAL PARTICLES IN BIOLOGICAL ENVIRONMENTS

38.6 SUMMARY AND CONCLUSIONS

ACKNOWLEDGMENTS

39 MOLECULAR MECHANISMS OF MEMBRANE FUSION

39.1 INTRODUCTION

39.2 LIPID MEMBRANE FUSION

39.3 LIPID MEMBRANE FUSION INDUCED OR MODULATED BY MACROMOLECULES

39.4 BIOLOGICAL MEMBRANE FUSION

39.5 CONCLUDING REMARKS

ACKNOWLEDGMENT

40 DRUG DELIVERY SYSTEM

40.1 INTRODUCTION

ACKNOWLEDGMENT

41 ON-CHIP CELL ELECTROPHORESIS AND EVALUATING CELLULAR FUNCTIONS

41.1 INTRODUCTION

41.2 A CHIP-BASED CELL ELECTROPHORESIS SYSTEM

41.3 CELL EPM AND CELLULAR FUNCTIONS

42 SURFACE CHARACTERISTICS AND ATTACHMENT BEHAVIORS OF BACTERIAL CELLS

42.1 SURFACE PROPERTIES OF BACTERIAL CELLS AND CELL ATTACHMENT

42.2 ATTACHMENT MECHANISM

42.3 FUTURE STUDY

43 DESIGN AND FABRICATION OF STERICALLY STABILIZED LIPOSOMES DISPERSED IN AQUEOUS SOLUTIONS BY UTILIZING ELECTROSTATIC INTERACTIONS FOR USE IN BIOMEDICAL APPLICATIONS

43.1 INTRODUCTION

43.2 COMPLEXATION OF LIPOSOMES WITH CHARGED POLYMERS FOR CONSTRUCTING STERICALLY STABILIZED VESICLE DISPERSION SYSTEMS

43.3 CONTROL OF THE FUSOGENIC ACTIVITY OF LIPOSOMES

43.4 FUNCTIONALIZED DRUG CARRIERS BASED ON LIPOSOMES

44 CELL REGULATION THROUGH MEMBRANE RAFTS/CAVEOLAE

44.1 INTRODUCTION

44.2 TNIIIA2, A TN-C-DERIVED PEPTIDE, STIMULATES CELL ADHESION TO FIBRONECTIN

44.3 CELL ADHESION INDUCED BY TNIIIA2 IS ATTRIBUTED TO FUNCTIONAL ACTIVATION OF β1-INTEGRINS

44.4 CATIONIC PROPERTY OF PEPTIDE TNIIIA2 IS CRUCIAL FOR THE ACTIVATION OF β1-INTEGRINS

44.5 TNIIIA2 INDUCES β1-INTEGRIN ACTIVATION THROUGH BINDING WITH SYNDECAN-4 IN A MEMBRANE RAFTS/CAVEOLAE-DEPENDENT MANNER

44.6 FORCED CELL ADHESION BY TNIIIA2 TO FIBRONECTIN SUBSTRATE LEADS LEUKEMIC CELLS TO APOPTOTIC DEATH IN A MEMBRANE RAFTS/CAVEOLAE-DEPENDENT MANNER

44.7 ADHESION-DEPENDENT APOPTOSIS IN OTHER HEMATOPOIETIC TUMOR CELLS

44.8 CONCLUSION

45 OXIDOREDUCTASES: ASYMMETRIC REDUCTION USING PHOTOSYNTHETIC ORGANISMS

45.1 INTRODUCTION

45.2 REACTION MECHANISM

45.3 HYDROGEN SOURCE FOR THE REGENERATION OF THE REDUCED FORM OF THE COENZYME

45.4 PHOTOSYNTHETIC ORGANISM-MEDIATED ASYMMETRIC REDUCTION OF KETONES

45.5 CONCLUSION

46 SURFACE ORGANIZATION OF POLY (ETHYLENE GLYCOL) (PEG)-BASED BLOCK COPOLYMERS FOR BIOMEDICAL APPLICATIONS

46.1 INTRODUCTION

46.2 CONSTRUCTION OF PEG-BRUSHED LAYER USING BLOCK COPOLYMERS

46.3 CONCLUSIONS

47 PEGYLATED NANOPARTICLES FOR BIOLOGICAL AND PHARMACEUTICAL APPLICATIONS

47.1 INTRODUCTION

47.2 POLYMERIC MICELLES FOR DRUG DELIVERY

47.3 SURFACE MODIFICATION WITH POLYMERIC MICELLES FOR THE DESIGN OF A FUNCTIONAL BIOINTERFACE

47.4 METAL AND SEMICONDUCTOR NANOPARTICLES AS BIOLOGICAL LABELS

47.5 CONCLUSION

Index

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Electrical phenomena at interfaces and biointerfaces : fundamentals and applications in nano-, bio-, and environmental sciences / edited by Hiroyuki Ohshima.

p. cm.

 Includes index.

 ISBN 978-0-470-58255-8 (cloth)

978-1-118-13541-9 (epdf)

978-1-118-13542-6 (epub)

978-1-118-13543-3 (mobi)

 1. Biological interfaces. 2. Surface chemistry. 3. Electric double layer. 4. Biotechnology. 5. Nanotechnology. 6. Environmental sciences. I. Ohshima, Hiroyuki, 1944-

 QP517.S87E44 2012

 612'.01583–dc23

2011028225

PREFACE

This book is based on a joint project of the Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, and the Electrokinetic Society of Japan. Kunio Furusawa and I edited Electrical Phenomena at Interfaces (1990; 2nd Edition, 1998); although this book has a similar title, it is on completely different concepts. This book is written for scientists, engineers, and graduate students who want to study theoretical and experimental aspects of electrical phenomena at interfaces and biointerfaces. The principal purpose of this book is to bridge three different fields: nano-, bio-, and environmental sciences. As a basis of these three different fields, the understanding of electrical phenomena at interfaces and biointerfaces is becoming more and more important.

This book is divided into three parts. Part I contains the fundamentals of electrical phenomena at interfaces and biointerfaces. Parts II and III treat many topics in this field, including applications in nano- and environmental sciences (Part II) and applications in biosciences (Part III).

I would like to gratefully acknowledge the assistance provided by Ms. Anita Lekhwani, Senior Acquisitions Editor, and Ms. Rebekah Amos, Editorial Program Coordinator, at John Wiley & Sons.

HIROYUKI OHSHIMA

Faculty of Pharmaceutical Sciences and Center for Colloid and Interface Science

Research Institute for Science and Technology

Tokyo University of Science, Japan

CONTRIBUTORS

Masahiko Abe, Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Yasuhisa Adachi, Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1, Tennnoudai, Tsukuba-shi, Ibaraki 305-8572 Japan

Silvia Ahualli, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Takanori Akagi, Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

Klaus Arnold, Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig 04103, Germany

Ángel V. Delgado, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Gjergi Dodbiba, Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

Stanislav S. Dukhin, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA

Kazunaka Endo, Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Toyohisa Fujita, Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

Fumio Fukai, Faculty of Pharmaceutical Sciences and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Fernando González-Caballero, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Hiroshi Hayashi, Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Jyh-Ping Hsu, Department of Chemical Engineering, National Taiwan University Taipei, Taiwan 10617

Takanori Ichiki, Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

María Luisa Jiménez, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Kang Kim, Institute for Molecular Science, Okazaki 444-8585, Japan

Takeshi Kawai, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Motoyoshi Kobayashi, Graduate School of Life and Environmental Sciences, University of Tsukuba , 1-1-1, Tennoudai, Tsukuba-shi, Ibaraki 305-8572, Japan

Takeshi Kondo, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Yukishige Kondo, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Shinichi Komaba, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

Friedrich Kremer, Institute of Experimental Physics I, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany

Jun Kuwano, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Kimiko Makino, Faculty of Pharmaceutical Sciences, Center for Colloid and Interface Science, Center for Physical Pharmaceutics, Research Institute for Science and Technology, and Center for Drug Delivery Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Hisao Morisaki, Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

Hidetoshi Matsumoto, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-27 Ookayama, Meguro-Ku, Tokyo 152- 8552, Japan

Kaoru Nakamura, Science Shop, Graduate School of Human Development and Environment, Kobe University, 3-11Tsurukabuto, Nada, Kobe 657-8501 Japan

Kazuho Nakamura, Department of Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Yasuya Nakayama, Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan

Naoto Nishida, Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884, Japan

Satoshi Nishimura, Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Higashil-1-1, Tsukuba, Ibaraki, 305-8565, Japan

Masashi Nojima, Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Shinpei Ohki, Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA

Hiroyuki Ohshima, Faculty of Pharmaceutical Sciences and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Kunihiko Okano, Department of Pure and Applied Chemistry, Faculty of Science and Technology and Center for Colloid and Interface Science, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Hidenori Otsuka, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Akira Otsuki, Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC, 3010, Australia

Toshiyuki Owaki, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Raúl A. Rica, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Walter Richtering, Lehrstuhl für Physikalische Chemie II, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany

Morihiro Saito, Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

Yohei Saito, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Hideki Sakai, Department of Pure and Applied Chemistry, Faculty of Science and Technology and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Joshua R. Sangoro, Institute of Experimental Physics I, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany

Hiroshi Sasaki, Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Anatoli Serghei, Université Lyon 1, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France

Yukihide Shiraishi, Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884, Japan, and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Makoto Tadokoro, Department of Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Tharwat Tadros, 89 Nash Grove Lane, Wokingham, Berkshire RG40 4HE, UK

Youichi Takata, Department of Chemical and Biological Engineering, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan

Shin-ichi Takeda, Takeda Colloid Techno-Consulting Co., Ltd., Senriyamanishi 1-41-14, Suita, Osaka 565-0851, Japan

Tetsuo Takemura, Department of Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku,Tokyo 162-8601, Japan

Akihiko Tanioka, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-27 Ookayama, Meguro-Ku, Tokyo 152- 8552, Japan

Chiharu Tokoro, Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Naoki Toshima, Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884, Japan

Tomoya Tsuchikawa, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

Koji Tsuchiya, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

Katsumi Uchida, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

Julián López-Viota, Department of Physics, Polytechnic School, University of Jaén, Campus Linares, 23700 Linares, Jaén, Spain

Carsten Werner, Leibniz Institute of Polymer Research Dresden & The Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany and Technische Universität Dresden, Center of Regenerative Therapies Dresden, Tatzberg 47, 01307 Dresden, Germany

John Erik Wong, RWTH Aachen University, Chemical Process Engineering, Turmstrasse 46, 52064 Aachen, Germany

Naoaki Yabuuchi, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Hirofumi Yajima, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

Kiyofumi Yamagiwa, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Ryoichi Yamamoto, Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan

Takashi Yamashita, Department of Pure and Applied Chemistry, Faculty of Science and Technology and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Li-Hsien Yeh, Department of Chemical Engineering, National Taiwan University Taipei, Taiwan 10617

Hiroharu Yui, Department of Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Ralf Zimmermann, Leibniz Institute of Polymer Research Dresden & The Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!