118,99 €
A timely book containing foundations and current research directions on emotion recognition by facial expression, voice, gesture and biopotential signals
This book provides a comprehensive examination of the research methodology of different modalities of emotion recognition. Key topics of discussion include facial expression, voice and biopotential signal-based emotion recognition. Special emphasis is given to feature selection, feature reduction, classifier design and multi-modal fusion to improve performance of emotion-classifiers.
Written by several experts, the book includes several tools and techniques, including dynamic Bayesian networks, neural nets, hidden Markov model, rough sets, type-2 fuzzy sets, support vector machines and their applications in emotion recognition by different modalities. The book ends with a discussion on emotion recognition in automotive fields to determine stress and anger of the drivers, responsible for degradation of their performance and driving-ability.
There is an increasing demand of emotion recognition in diverse fields, including psycho-therapy, bio-medicine and security in government, public and private agencies. The importance of emotion recognition has been given priority by industries including Hewlett Packard in the design and development of the next generation human-computer interface (HCI) systems.
Emotion Recognition: A Pattern Analysis Approach would be of great interest to researchers, graduate students and practitioners, as the book
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1088
Veröffentlichungsjahr: 2014
Edited by
AMIT KONAR
Artificial Intelligence Laboratory Department of Electronics and Telecommunication Engineering Jadavpur University Kolkata, India
ARUNA CHAKRABORTY
Department of Computer Science & Engineering St. Thomas' College of Engineering & Technology Kolkata, India
Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
For general information on our other products and services please contact our Customer Care Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.
Library of Congress Cataloging-in-Publication Data:Konar, Amit. Emotion recognition : a pattern analysis approach / Amit Konar, Aruna Chakraborty. pages cm Includes index. ISBN 978-1-118-13066-7 (hardback) 1. Human-computer interaction. 2. Artificial intelligence. 3. Emotions–Computer simulation. 4. Pattern recognition systems. 5. Context-aware computing. I. Chakraborty, Aruna, 1977- II. Title. QA76.9.H85K655 2014 004.01'9–dc23
2014024314
To our parents
Preface
Acknowledgments
Contributors
Chapter 1: Introduction to Emotion Recognition
1.1 Basics of Pattern Recognition
1.2 Emotion Detection as a Pattern Recognition Problem
1.3 Feature Extraction
1.4 Feature Reduction Techniques
1.5 Emotion Classification
1.6 Multimodal Emotion Recognition
1.7 Stimulus Generation for Emotion Arousal
1.8 Validation Techniques
1.9 Summary
References
Author Biographies
Chapter 2: Exploiting Dynamic Dependencies Among Action Units for Spontaneous Facial Action Recognition
2.1 Introduction
2.2 Related Work
2.3 Modeling the Semantic and Dynamic Relationships Among Aus With a DBN
2.4 Experimental Results
2.5 Conclusion
References
Author Biographies
Note
Chapter 3: Facial Expressions: A Cross-Cultural Study
3.1 Introduction
3.2 Extraction of Facial Regions and Ekman’s Action Units
3.3 Cultural Variation in Occurrence of Different Aus
3.4 Classification Performance Considering Cultural Variability
3.5 Conclusion
References
Author Biographies
Notes
Chapter 4: A Subject-dependent Facial Expression Recognition System
4.1 Introduction
4.2 Proposed Method
4.3 Experiment Result
4.4 Conclusion
Acknowledgment
References
Author Biographies
Chapter 5: Facial Expression Recognition Using Independent Component Features and Hidden Markov Model
5.1 Introduction
5.2 Methodology
5.3 Experimental Results
5.4 Conclusion
Acknowledgments
References
Author Biographies
Chapter 6: Feature Selection for Facial Expression based on Rough Set Theory
6.1 Introduction
6.2 Feature Selection for Emotion Recognition Based on Rough Set Theory
6.3 Experiment Results and Discussion
6.4 Conclusion
Acknowledgments
References
Author Biographies
Chapter 7: Emotion Recognition from Facial Expressions Using Type-2 Fuzzy Sets
7.1 Introduction
7.2 Preliminaries on Type-2 Fuzzy Sets
7.3 Uncertainty Management in Fuzzy-Space for Emotion Recognition
7.4 Fuzzy Type-2 Membership Evaluation
7.5 Experimental Details
7.6 Performance Analysis
7.7 Conclusion
References
Author Biographies
Chapter 8: Emotion Recognition from Non-frontal Facial Images
8.1 Introduction
8.2 A Brief Review of Automatic Emotional Expression Recognition
8.3 Databases for Non-Frontal Facial Emotion Recognition
8.4 Recent Advances of Emotion Recognition from Non-Frontal Facial Images
8.5 Discussions and Conclusions
Acknowledgments
References
Author Biographies
Chapter 9: Maximum a Posteriori based Fusion Method for Speech Emotion Recognition
9.1 Introduction
9.2 Acoustic Feature Extraction for Emotion Recognition
9.3 Proposed Map-Based Fusion Method
9.4 Experiment
9.5 Conclusion
References
Author Biographies
Chapter 10: Emotion Recognition in Naturalistic Speech and Language—A Survey
10.1 Introduction
10.2 Tasks and Applications
10.3 Implementation and Evaluation
10.4 Challenges
10.5 Conclusion and Outlook
Acknowledgment
References
Author Biographies
Notes
Chapter 11: EEG-Based Emotion Recognition Using Advanced Signal Processing Techniques
11.1 Introduction
11.2 Brain Activity and Emotions
11.3 EEG-ER Systems: An Overview
11.4 Emotion Elicitation
11.5 Advanced Signal Processing in EEG-ER
11.6 Concluding Remarks and Future Directions
References
Author Biographies
Chapter 12: Frequency Band Localization on Multiple Physiological Signals for Human Emotion Classification Using DWT
12.1 Introduction
12.2 Related Work
12.3 Research Methodology
12.4 Experimental Results and Discussions
12.5 Conclusion
12.6 Future Work
Acknowledgments
References
Author Biography
Chapter 13: Toward Affective Brain–Computer Interface: Fundamentals and Analysis of EEG-based Emotion Classification
13.1 Introduction
13.2 Materials and Methods
13.3 Results and Discussion
13.4 Conclusion
13.5 Issues and Challenges Toward ABCIs
Acknowledgments
References
Author Biographies
Chapter 14: Bodily Expression for Automatic Affect Recognition
14.1 Introduction
14.2 Background and Related Work
14.3 Creating a Database of Facial and Bodily Expressions: The Fabo Database
14.4 Automatic Recognition of Affect from Bodily Expressions
14.5 Automatic Recognition of Bodily Expression Temporal Dynamics
14.6 Discussion and Outlook
14.7 Conclusions
Acknowledgments
References
Author Biographies
Note
Chapter 15: Building a Robust System for Multimodal Emotion Recognition
15.1 Introduction
15.2 Related Work
15.3 The Callas Expressivity Corpus
15.4 Methodology
15.5 Multisensor Data Fusion
15.6 Experiments
15.7 Online Recognition System
15.8 Conclusion
Acknowledgment
References
Author Biographies
Notes
Chapter 16: Semantic AudioVisual Data Fusion for Automatic Emotion Recognition
16.1 Introduction
16.2 Related Work
16.3 Data Set Preparation
16.4 Architecture
16.5 Results
16.6 Conclusion
References
Author Biographies
Chapter 17: A Multilevel Fusion Approach for Audiovisual Emotion Recognition
17.1 Introduction
17.2 Motivation and Background
17.3 Facial Expression Quantification
17.4 Experiment Design
17.5 Experimental Results and Discussion
17.6 Conclusion
References
Author Biographies
Chapter 18: From A Discrete Perspective of Emotions to Continuous, Dynamic, and Multimodal Affect Sensing
18.1 Introduction
18.2 A Novel Method for Discrete Emotional Classification of Facial Images
18.3 A 2D Emotional Space for Continuous and Dynamic Facial Affect Sensing
18.4 Expansion to Multimodal Affect Sensing
18.5 Building Tools That Care
18.6 Concluding Remarks and Future Work
Acknowledgments
References
Author Biographies
Chapter 19: AudioVisual Emotion Recognition using Semi-Coupled Hidden Markov Model with State-Based Alignment Strategy
19.1 Introduction
19.2 Feature Extraction
19.3 Semi-Coupled Hidden Markov Model
19.4 Experiments
19.5 Conclusion
References
Author Biographies
Chapter 20: Emotion Recognition in Car Industry
20.1 Introduction
20.2 An Overview of Application for the Car Industry
20.3 Modality-Based Categorization
20.4 Emotion-Based Categorization
20.5 Two Exemplar Cases
20.6 Open Issues and Future Steps
20.7 Conclusion
References
Author Biographies
Notes
Index
End User License Agreement
Chapter 2
Table 2.1
Table 2.2
Chapter 3
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10
Chapter 4
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Chapter 5
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Chapter 6
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Chapter 7
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7
Table 7.8
Table 7.9
Table 7.10
Table 7.11
Chapter 8
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6
Table 8.7
Chapter 9
Table 9.1
Table 9.2
Chapter 11
Table 11.1
Table 11.2
Chapter 12
Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5
Table 12.6
Table 12.7
Table 12.8
Table 12.9
Table 12.10
Table 12.11
Chapter 13
Table 13.1
Table 13.2
Table 13.3
Table 13.4
Chapter 14
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Chapter 15
Table 15.1
Table 15.2
Table 15.3
Chapter 16
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6
Table 16.7
Table 16.8
Table 16.9
Chapter 17
Table 17.1
Table 17.2
Table 17.3
Table 17.4
Table 17.5
Table 17.6
Table 17.7
Chapter 18
Table 18.1
Table 18.2
Table 18.3
Table 18.4
Table 18.5
Chapter 19
Table 19.1
Table 19.2
Table 19.3
Table 19.4
Table 19.5
Chapter 20
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table 20.5
Table 20.6
Table 20.7
Table 20.8
Table 20.9
Table 20.10
Chapter 1
Figure 1.1 Basic steps of pattern recognition.
Figure 1.2 The international 10-20 electrode placement system.
Figure 1.3 Defining support vector for a linear SVM system.
Chapter 2
Figure 2.1 A pair of (a) static network
B
0
and (b) transition network
B
→
define the dynamic dependencies for three random variables
X
1
,
X
2
,
X
3
. (c) The corresponding “unrolled” DBN for
T
+ 1 time slices.
Figure 2.2 (a) The initial transition network and (b) the learned transition network by the proposed algorithm for AU modeling. The self-arrow at each AU node indicates the temporal evolution of a single AU from the previous time slice to the current time slice. The dashed line with arrow from at time − 1 to ( ≠ ) at time indicates the dynamic dependency between different AUs.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
