116,99 €
This book discusses modern-day Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and future trends of transistor devices.
This book provides an overview of Field Effect Transistors (FETs) by discussing the basic principles of FETs and exploring the latest technological developments in the field. It covers and connects a wide spectrum of topics related to semiconductor device physics, physics of transistors, and advanced transistor concepts. This book contains six chapters. Chapter 1 discusses electronic materials and charge. Chapter 2 examines junctions, discusses contacts under thermal-equilibrium, metal-semiconductor contacts, and metal-insulator-semiconductor systems. Chapter 3 covers traditional planar Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). Chapter 4 describes scaling-driving technological variations and novel dimensions of MOSFETs. Chapter 5 analyzes Heterojunction Field Effect Transistors (FETs) and also discusses the challenges and rewards of heteroepitaxy. Finally, Chapter 6 examines FETs at molecular scales.
Field Effect Transistors, A Comprehensive Overview: From Basic Concepts to Novel Technologies is a reference for senior undergraduate / graduate students and professional engineers needing insight into physics of operation of modern FETs.
Pouya Valizadeh is Associate Professor in the Department of Electrical and Computer Engineering at Concordia University in Quebec, Canada. He received B.S. and M.S. degrees with honors from the University of Tehran and Ph.D. degree from The University of Michigan (Ann Arbor) all in Electrical Engineering in 1997, 1999, and 2005, respectively. Over the past decade, Dr. Valizadeh has taught numerous sections of five different courses covering topics such as semiconductor process technology, semiconductor materials and their properties, advanced solid state devices, transistor design for modern CMOS technology, and high speed transistors.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 893
Veröffentlichungsjahr: 2016
COVER
TITLE PAGE
INTRODUCTION
1 ELECTRONIC MATERIALS AND CHARGE TRANSPORT
1.1 WAVE/PARTICLE ELECTRONS IN SOLIDS
1.2 ELECTRONS, HOLES, AND DOPING IN SEMICONDUCTORS
1.3 THERMAL-EQUILIBRIUM STATISTICS
1.4 CHARGE-CARRIER TRANSPORT IN SEMICONDUCTORS
1.5 BREAKDOWN IN SEMICONDUCTORS
1.6 CRYSTALLINITY AND SEMICONDUCTOR MATERIALS
1.7 QUANTUM TRANSPORT PHENOMENA AND SCATTERING MECHANISMS IN SEMICONDUCTORS
FURTHER READING
SOLID-STATE THEORY
PHYSICS OF SEMICONDUCTOR DEVICES
SEMICONDUCTOR MATERIALS AND HETEROSTRUCTURES
PROBLEMS
APPENDIX 1.A DERIVATION OF
FERMI–DIRAC
STATISTICS
FURTHER READING
APPENDIX 1.B DERIVATION OF EINSTEIN RELATIONSHIP IN DEGENERATE SEMICONDUCTORS
FURTHER READING
APPENDIX 1.C STRAIN TENSOR
2 JUNCTIONS
2.1 CONTACTS UNDER THERMAL EQUILIBRIUM
2.2 METAL–SEMICONDUCTOR CONTACTS
2.3
P–N
JUNCTIONS
2.4 METAL–INSULATOR–SEMICONDUCTOR SYSTEM
2.5 CURRENT CONDUCTION IN THE PRESENCE OF BAND DISCONTINUITIES IN JUNCTIONS
FURTHER READING
PHYSICS OF SEMICONDUCTOR DEVICES
PROBLEMS
APPENDIX 2.A LIMITATIONS OF
SDA
AND THE MEANING OF DEBYE LENGTH
3 TRADITIONAL PLANAR MOSFETs
3.1 BATTLE OF TRANSISTORS: MOSFET VERSUS BJT
3.2 PRINCIPLES OF OPERATION OF MOSFETs AND DEVICE MODELING: FIRST-ORDER PRINCIPLES
3.3 QUANTUM CONFINEMENT AND ELECTROSTATICS OF MOSFET
3.4 SUBTHRESHOLD OPERATION OF SHORT-CHANNEL MOSFET
3.5 LIMITS OF SCALING: A RECAP
REFERENCE
FURTHER READING
PHYSICS OF SEMICONDUCTOR DEVICES
MICROFABRICATION TECHNOLOGY AND MATERIAL CHARACTERIZATION
PROBLEMS
4 FROM SCALING-DRIVEN TECHNOLOGICAL VARIATIONS TO NOVEL DIMENSIONS IN MISFETs
4.1
FinFET
,
UTBSOI
, AND OTHER MULTIPLE-GATE
FETs
4.2 VELOCITY-MODULATION TRANSISTOR
4.3 RESONANT-GATE AND RESONANT-CHANNEL TRANSISTORS
4.4 CARBON NANOTUBE
FET
AND
FETs
REALIZED ON OTHER NANOTUBE AND NANOWIRES
4.5
spinFET
REFERENCES
FURTHER READING
PROBLEMS
5 HETEROJUNCTION FETs
5.1 CHALLENGES AND REWARDS OF HETEROEPITAXY
5.2 QUANTUM PHENOMENA IN SEMICONDUCTOR HETEROSTRUCTURES
5.3 HFET: BRIEF EXPOSÉ OF DESIGN INTRICACIES
5.4 POLAR III-NITRIDE
HFET
REFERENCES
FURTHER READING
PHYSICS OF HETEROSTRUCTURES AND HIGH-SPEED TRANSISTORS
MATERIAL PROPERTIES AND PROCESSING OF SEMICONDUCTOR MATERIALS AND HETEROSTRUCTURES
PROBLEMS
6
FETs
AT MOLECULAR SCALES
6.1
FET
: A CHANGE OF PARADIGM
6.2 RESISTANCE REDEFINED
6.3 EVALUATION OF CURRENT–VOLTAGE CHARACTERISTICS OF A SINGLE ENERGY-LEVEL CHANNEL
FET
6.4 FROM CURRENT CONDUCTION IN SINGLE ENERGY-LEVEL CHANNELS TO DEFINITION OF CONDUCTANCE IN MACROSCALE CONDUCTORS
FURTHER READING
INDEX
END USER LICENSE AGREEMENT
Chapter 01
TABLE 1.1 Energy Range of Interest in the Band Structure of Semiconductor for Understanding the Behavior of Various Electronic Devices and under Different Conditions
TABLE 1.2 The Temperature Dependence of the Size of the
Bandgap
of a Number of Important Semiconductors
TABLE 1.3 List of Ionization Energies for a Number of Important Impurities in Si, Ge, GaAs, InP, and GaN
TABLE 1.4 A Number of Important Properties of Si, Ge, GaAs, and GaN at Room Temperature
TABLE 1.5 A Summary of Important Transport Properties of Si and GaAs
TABLE 1.6 The Fourteen 3-D Lattice Types
TABLE 1.7 Summary of the Characteristics of Cubic Lattice Types
Chapter 02
TABLE 2.1 Summary of the Biasing Scenarios of an
MIS S
ystem Made to a p-Type Semiconductor
TABLE 2.2 Summary of the Observations Made on the
C–V
Characteristics of an
MIS
System for
V
MS
beyond the Onset of Strong Inversion
TABLE 2.3 The Basic Conduction Processes Encountered across the Insulators along with Their Temperature and Voltage Dependences
Chapter 03
TABLE 3.1 Values of the Parameters of the Empirical Expression (3.24).
Chapter 01
FIGURE 1.1 (a) A 2-D confining quantum well. (b) A 1-D confining quantum wire.
FIGURE 1.2 (a) A simplified typically observed
E–k
diagram among a number of semiconductors. As will be indicated shortly, in this diagram
E
c
and
E
v
mark the bottom of the conduction and the top of the valence band and
E
g
represents the size of the forbidden gap of energy. (b) A 1-D representation of the bandgap. (c) The 2-D band diagram.
FIGURE 1.3 (a) Typical form of the density of states function in a 3-D semiconductor. (b) Typical form of the
DOS
function in a quantum well. (c) Typical form of the
DOS
function in a quantum wire.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
