54,99 €
Provides a concise overview of the core undergraduate physics and applied mathematics curriculum for students and practitioners of science and engineering Fundamental Math and Physics for Scientists and Engineers summarizes college and university level physics together with the mathematics frequently encountered in engineering and physics calculations. The presentation provides straightforward, coherent explanations of underlying concepts emphasizing essential formulas, derivations, examples, and computer programs. Content that should be thoroughly mastered and memorized is clearly identified while unnecessary technical details are omitted. Fundamental Math and Physics for Scientists and Engineers is an ideal resource for undergraduate science and engineering students and practitioners, students reviewing for the GRE and graduate-level comprehensive exams, and general readers seeking to improve their comprehension of undergraduate physics. * Covers topics frequently encountered in undergraduate physics, in particular those appearing in the Physics GRE subject examination * Reviews relevant areas of undergraduate applied mathematics, with an overview chapter on scientific programming * Provides simple, concise explanations and illustrations of underlying concepts Succinct yet comprehensive, Fundamental Math and Physics for Scientists and Engineers constitutes a reference for science and engineering students, practitioners and non-practitioners alike.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 590
Veröffentlichungsjahr: 2014
Cover
Title page
Copyright page
Dedication
1 Introduction
2 Problem Solving
2.1 Analysis
2.2 Test-Taking Techniques
3 Scientific Programming
3.1 Language Fundamentals
4 Elementary Mathematics
4.1 Algebra
4.2 Geometry
4.3 Exponential, Logarithmic Functions, and Trigonometry
4.4 Analytic Geometry
5 Vectors and Matrices
5.1 Matrices and Matrix Products
5.2 Equation Systems
5.3 Traces and Determinants
5.4 Vectors and Inner Products
5.5 Cross and Outer Products
5.6 Vector Identities
5.7 Rotations and Orthogonal Matrices
5.8 Groups and Matrix Generators
5.9 Eigenvalues and Eigenvectors
5.10 Similarity Transformations
6 Calculus of a Single Variable
6.1 Derivatives
6.2 Integrals
6.3 Series
7 Calculus of Several Variables
7.1 Partial Derivatives
7.2 Multidimensional Taylor Series and Extrema
7.3 Multiple Integration
7.4 Volumes and Surfaces of Revolution
7.5 Change of Variables and Jacobians
8 Calculus of Vector Functions
8.1 Generalized Coordinates
8.2 Vector Differential Operators
8.3 Vector Differential Identities
8.4 Gauss’s and Stokes’ Laws and Green’s Identities
8.5 Lagrange Multipliers
9 Probability Theory and Statistics
9.1 Random Variables, Probability Density, and Distributions
9.2 Mean, Variance, and Standard Deviation
9.3 Variable Transformations
9.4 Moments and Moment-Generating Function
9.5 Multivariate Probability Distributions, Covariance, and Correlation
9.6 Gaussian, Binomial, and Poisson Distributions
9.7 Least Squares Regression
9.8 Error Propagation
9.9 Numerical Models
10 Complex Analysis
10.1 Functions of a Complex Variable
10.2 Derivatives, Analyticity, and the Cauchy–Riemann Relations
10.3 Conformal Mapping
10.4 Cauchy’s Theorem and Taylor and Laurent Series
10.5 Residue Theorem
10.6 Dispersion Relations
10.7 Method of Steepest Decent
11 Differential Equations
11.1 Linearity, Superposition, and Initial and Boundary Values
11.2 Numerical Solutions
11.3 First-Order Differential Equations
11.4 Wronskian
11.5 Factorization
11.6 Method of Undetermined Coefficients
11.7 Variation of Parameters
11.8 Reduction of Order
11.9 Series Solution and Method of Frobenius
11.10 Systems of Equations, Eigenvalues, and Eigenvectors
12 Transform Theory
12.1 Eigenfunctions and Eigenvectors
12.2 Sturm–Liouville Theory
12.3 Fourier Series
12.4 Fourier Transforms
12.5 Delta Functions
12.6 Green’s Functions
12.7 Laplace Transforms
12.8 z-Transforms
13 Partial Differential Equations and Special Functions
13.1 Separation of Variables and Rectangular Coordinates
13.2 Legendre Polynomials
13.3 Spherical Harmonics
13.4 Bessel Functions
13.5 Spherical Bessel Functions
14 Integral Equations and the Calculus of Variations
14.1 Volterra and Fredholm Equations
14.2 Calculus of Variations the Euler-Lagrange Equation
15 Particle Mechanics
15.1 Newton’s Laws
15.2 Forces
15.3 Numerical Methods
15.4 Work and Energy
15.5 Lagrange Equations
15.6 Three-Dimensional Particle Motion
15.7 Impulse
15.8 Oscillatory Motion
15.9 Rotational Motion About a Fixed Axis
15.10 Torque and Angular Momentum
15.11 Motion in Accelerating Reference Systems
15.12 Gravitational Forces and Fields
15.13 Celestial Mechanics
15.14 Dynamics of Systems of Particles
15.15 Two-Particle Collisions and Scattering
15.16 Mechanics of Rigid Bodies
15.17 Hamilton’s Equation and Kinematics
16 Fluid Mechanics
16.1 Continuity Equation
16.2 Euler’s Equation
16.3 Bernoulli’s Equation
17 Special Relativity
17.1 Four-Vectors and Lorentz Transformation
17.2 Length Contraction, Time Dilation, and Simultaneity
17.3 Covariant Notation
17.4 Casuality and Minkowski Diagrams
17.5 Velocity Addition and Doppler Shift
17.6 Energy and Momentum
18 Electromagnetism
18.1 Maxwell’s Equations
18.2 Gauss’s Law
18.3 Electric Potential
18.4 Current and Resistivity
18.5 Dipoles and Polarization
18.6 Boundary Conditions and Green’s Functions
18.7 Multipole Expansion
18.8 Relativistic Formulation of Electromagnetism, Gauge Transformations, and Magnetic Fields
18.9 Magnetostatics
18.10 Magnetic Dipoles
18.11 Magnetization
18.12 Induction and Faraday’s Law
18.13 Circuit Theory and Kirchoff’s Laws
18.14 Conservation Laws and the Stress Tensor
18.15 Lienard–Wiechert Potentials
18.16 Radiation from Moving Charges
19 Wave Motion
19.1 Wave Equation
19.2 Propagation of Waves
19.3 Planar Electromagnetic Waves
19.4 Polarization
19.5 Superposition and Interference
19.6 Multipole Expansion for Radiating Fields
19.7 Phase and Group Velocity
19.8 Minimum Time Principle and Ray Optics
19.9 Refraction and Snell’s Law
19.10 Lenses
19.11 Mechanical Reflection
19.12 Doppler Effect and Shock Waves
19.13 Waves in Periodic Media
19.14 Conducting Media
19.15 Dielectric Media
19.16 Reflection and Transmission
19.17 Diffraction
19.18 Waveguides and Cavities
20 Quantum Mechanics
20.1 Fundamental Principles
20.2 Particle–Wave Duality
20.3 Interference of Quantum Waves
20.4 Schrödinger Equation
20.5 Particle Flux and Reflection
20.6 Wave Packet Propagation
20.7 Numerical Solutions
20.8 Quantum Mechanical Operators
20.9 Heisenberg Uncertainty Relation
20.10 Hilbert Space Representation
20.11 Square Well and Delta Function Potentials
20.12 WKB Method
20.13 Harmonic Oscillators
20.14 Heisenberg Representation
20.15 Translation Operators
20.16 Perturbation Theory
20.17 Adiabatic Theorem
21 Atomic Physics
21.1 Properties of Fermions
21.2 Bohr Model
21.3 Atomic Spectra and X-Rays
21.4 Atomic Units
21.5 Angular Momentum
21.6 Spin
21.7 Interaction of Spins
21.8 Hydrogenic Atoms
21.9 Atomic Structure
21.10 Spin–Orbit Coupling
21.11 Atoms in Static Electric and Magnetic Fields
21.12 Helium Atom and the
Molecule
21.13 Interaction of Atoms with Radiation
21.14 Selection Rules
21.15 Scattering Theory
22 Nuclear and Particle Physics
22.1 Nuclear Properties
22.2 Radioactive Decay
22.3 Nuclear Reactions
22.4 Fission and Fusion
22.5 Fundamental Properties of Elementary Particles
23 Thermodynamics and Statistical Mechanics
23.1 Entropy
23.2 Ensembles
23.3 Statistics
23.4 Partition Functions
23.5 Density of States
23.6 Temperature and Energy
23.7 Phonons and Photons
23.8 The Laws of Thermodynamics
23.9 The Legendre Transformation and Thermodynamic Quantities
23.10 Expansion of Gases
23.11 Heat engines and the Carnot Cycle
23.12 Thermodynamic Fluctuations
23.13 Phase Transformations
23.14 The Chemical Potential and Chemical Reactions
23.15 The Fermi Gas
23.16 Bose–Einstein Condensation
23.17 Physical Kinetics and Transport Theory
24 Condensed Matter Physics
24.1 Crystal Structure
24.2 X-Ray Diffraction
24.3 Thermal Properties
24.4 Electron Theory of Metals
24.5 Superconductors
24.6 Semiconductors
25 Laboratory Methods
25.1 Interaction of Particles with Matter
25.2 Radiation Detection and Counting Statistics
25.3 Lasers
Index
End User License Agreement
Chapter 04
Figure 4.1 Corresponding angles.
Figure 4.2 Proof that the angles of a triangle sum to 180°.
Figure 4.3 Right angle triangle.
Figure 4.4 Hyperbolic functions.
Figure 4.5 Harmonic functions.
Figure 4.6 Geometric interpretation of a complex number.
Chapter 05
Figure 5.1 Addition of two vectors.
Chapter 07
Figure 7.1 Integration limits.
Chapter 08
Figure 8.1 Computation of curl.
Chapter 10
Figure 10.1 Contour for Cauchy’s theorem.
Figure 10.2 Laurent series contour.
Figure 10.3 Contour integration enclosing several singularities.
Figure 10.4 Integration contour.
Figure 10.5 Contour for principal part integration.
Chapter 11
Figure 11.1 Slope field.
Chapter 15
Figure 15.1 Two pulley system.
Figure 15.2 Infinitesimal rotation.
Figure 15.3 Euler angles.
Chapter 17
Figure 17.1 Light ray in a moving frame.
Figure 17.2 Minkowski diagram.
Chapter 19
Figure 19.1 Refraction at a dielectric interface for TM polarization.
Figure 19.2 Modal condition.
Chapter 23
Figure 23.1 Thermodynamic square.
Figure 23.2 Carnot cycle.
Cover
Table of Contents
Begin Reading
iii
iv
v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
DAVID YEVICK
HANNAH YEVICK
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
