39,99 €
GREAT INVENTIONS THAT CHANGED THE WORLD Discover the inventions that have made our world what it is today A great invention opens the door to a new era in human history. The stone axe, for example, invented some 2 million years ago in East Africa, enabled us to enter the human path of endless improvements through inventions. The taming of fire enabled us to cook food as well as leave the warmth of Africa and move to the frigid lands of the North. From the stone axe to the computer and the Internet, this book provides a fascinating tour of the most important inventions and inventors throughout history. You'll discover the landmark achievements and the men and women that made the world what it is today. Great Inventions That Changed the World is written by Professor James Wei, a renowned educator and engineer who holds several patents for his own inventions. Following an introductory chapter examining the role of inventors and inventions in fueling innovation and global advancement, the book is organized to show how inventions are spurred by human needs and desires, including: * Work * Food, clothing, and housing * Health and reproduction * Security * Transportation * Information * The good life As you progress through the book, you'll not only learn about inventions and inventors, but also the impact they have had on our lives and the society and environment in which we live today. Inventions solve problems, but as this book so expertly demonstrates, they can also directly or indirectly create new problems as well, from pollution to global warming to bioterrorism. By enabling us to understand the impact of inventions throughout history, this book can help guide the next generation of citizens, decision makers, and inventors.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 825
Veröffentlichungsjahr: 2012
Contents
Cover
Title Page
Copyright
Foreword
Preface
Chapter 1: Introduction
1.1 Inventors and Inventions
1.2 Innovation, Development, Diffusion
1.3 Changing the World
References
Web Sources
Chapter 2: Inventions for Work
2.1 Tools and Methods
2.2 Energy and Power
2.3 Materials
References
Chapter 3: Domestic Life: Food, Clothes, and House
3.1 Food
3.2 Clothes
3.3 House
References
Chapter 4: Health, Reproduction
4.1 Prevention
4.2 Diagnostics
4.3 Therapy
4.4 Reproduction
References
Chapter 5: Security
5.1 Natural Threats
5.2 Economic Threats
5.3 Human Violence: War
References
Chapter 6: Transportation
6.1 Land Transportation
6.2 Water Transportation
6.3 Air and Space Transportation
References
Chapter 7: Information
7.1 Observation
7.2 Records
7.3 Communication
7.4 Information Tools
References
Chapter 8: Good Life
8.1 Party and Play
8.2 Luxury
8.3 Arts
References
Chapter 9: Future Challenges
9.1 Future Needs and Opportunities
9.2 Future Sources of Inventions
References
Index
Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.
Library of Congress Cataloging-in-Publication Data
Wei, James, 1930-
Great inventions that changed the world / James Wei, Princeton University.
pages cm
Includes index.
ISBN 978-0-470-76817-4 (hardback)
1. Inventions. 2. Technological innovations. I. Title.
T15.W45 2012
600–dc23
2011053470
Foreword
The Earth is now 4.5 billion years old. Yet, virtually all the knowledge and inventions available today appeared in the last century or so. Extrapolate that pace of change forward and accelerate it and one has an idea what life will be like a century, or millennium, in the future. Or perhaps more accurately one has no idea.
That is not to suggest that all previous times were Dark Ages of Innovation: On the contrary, there was the lever, wheel, wedge, stirrup, long bow, telescope, and more, but nothing like the veritable flood of innovation that engulfs this fast-forward world in which we live today.
Various studies have shown that 50–85% of the growth in US GDP over the past half century and two-thirds of the productivity increase (read standard of living gain) are due to advancements in science and engineering. The US National Academies and many other organizations have concluded that the future quality of life in developed nations that have huge competitive disadvantages in the cost of labor will depend upon their ability to innovate; that is, to create knowledge through extraordinary scientific research, to translate that knowledge into products and services through engineering leadership, and through world-class entrepreneurship shepherd those products and services across “the Valley of Death,” where so many new innovations fail for economic reasons, and into the marketplace.
This is not easy. Only about 1 patent application in 100 leads to a successful product. Thomas Edison, seeking a filament for an electric light bulb, once explained, “I have not failed. I have found 10,000 ways that won't work.” And 60% of new companies go out of business in less than 3 years.
Today, the populace of Earth must produce $1.5 million of goods and services each second, 24/7, merely to preserve the existing standard of living on the planet—a standard under which half the population still survives on less than $2 per day. The Red Queen, speaking to Alice in Lewis Carroll's Through the Looking Glass, offers sound advice: “Here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!”
Consider a snapshot of the lifetime of the author of this Foreword. He began his engineering training performing calculations using three sticks of wood and two pieces of glass; his youth included occasional summers of confinement to his yard due to the fear of polio; his early professional years included helping put a dozen friends on the moon; and his business years ended with him working with 82,000 engineering colleagues, along with experts in many other fields, to create $1000 of new business every second, merely to keep the firm that employed them all afloat. Craig Barrett, the retired CEO of Intel, points out that 90% of the revenues that company receives on the last day of the firm's fiscal year are derived from products that did not even exist on January 1 of that same year. It took 55 years for one-fourth of the US population to have an automobile, 35 years for the telephone, 21 years for the radio, 13 years for the cell phone, and only 7 years for the World Wide Web.
In this book, Professor Jim Wei, a superbly qualified guide, conducts us—poets and physicists alike—through a fascinating and informative tour of what it means to invent. This is a tour punctuated with risk-taking, failure, determination, insightfulness, luck, and, yes, even resounding success. We watch as scientists, engineers, and entrepreneurs collect a great deal of scar tissue—all without pain for us. It seems that success in innovation is not always where one looks for it: penicillin was discovered when Sir Alexander Fleming noticed that the bacteria he had been studying were not growing near the mold that had accumulated on a Petri dish that had been contaminated. A researcher of the Raytheon Corporation conceived the microwave oven when he noticed that a candy bar he was carrying in his pocket at the company's radar lab was melting. But, importantly, Louis Pasteur reminds us that “Chance favors only the prepared mind.”
Margaret Thatcher notes that “ . . . although basic science can have colossal economic rewards, they are totally unpredictable. Nevertheless, the value of Faraday's work today must be higher than the capitalization of all shares on the stock exchange . . . .” Indeed, it is doubtful that the early researchers in quantum mechanics had iPods or GPS in mind as they labored in their laboratories.
Today, the character of innovation itself is changing. While there will always be room for the Edisons, Fultons, and Whitneys, innovation—in both the science and the engineering—is increasingly becoming the province of teams—often of very large teams possessing very diverse backgrounds. This is the era of Big Science. Astronaut Buzz Aldrin observes that “It's amazing what one person can do, along with 10,000 friends.” Inventions are now being found with increasing regularity at the intersection of disciplines. Plastics are made through the efforts of tiny bugs; and if one is dissatisfied with the output of these bugs, one need to only reengineer the bugs.
Science and engineering—which have brought us the Global Village by making distance increasingly less relevant—are themselves leading the parade toward globalization. It is noteworthy in this regard that America's innovation enterprise would barely function were it not for the foreign-born individuals who came to America's shores for their education, stayed, started companies, and created millions of jobs. One such individual, Jerry Yang, has said that “Yahoo! would not be an American company today if the United States had not welcomed my family and me almost 30 years ago.”
Unfortunately, Americans, in particular, have been inclined to take leadership in innovation for granted. Dan Goldin tells of an incident that occurred when he was Administrator of NASA wherein the Agency was being criticized for investing so heavily in earth satellites. “Why do we need meteorological satellites?” the critic asked. “We have the Weather Channel.” If we expect to get information from the Weather Channel, we need to support meteorological satellites. Of course, some innovations do seem rather humble—but that would be a dangerous generalization. A National Academy of Engineering panel led by astronaut Neal Armstrong concluded that the most important engineering accomplishment of the twentieth century was the development of household appliances—which freed the time of half the population to contribute through more rewarding pursuits. It is also noteworthy that if one were born in America at the beginning of the twentieth century, one's life expectancy was 47 years. Much of the gain since that time has been realized through advances in fields as diverse as food production and healthcare.
Unfortunately, as in so many pursuits, progress in innovation is not without its unintended consequences. It has, for example, been asserted that in spite of automotive advances, the average speed of surface travel across London today is about what it was 200 years ago. Large-scale terrorism has been made possible by developments in science and engineering that for the first time in history enable individuals or small groups, acting alone, to profoundly impact the lives of large groups. An unscientific survey by the writer of this Foreword reveals that most people believe that an invention that will inadvertently kill a quarter of a million people a year should be banned, until they hear that the invention is the automobile.
What of the future? The historical tendency has been to overestimate the near-term impact of science, engineering, and entrepreneurship, that is, “innovation,” and overestimate it in the long term. A prime example of the former comes from Alexander Lewyt, founder and president of the appliance company by the same name, who in 1955 predicted, “Nuclear powered vacuum cleaners will be a reality within ten years.” On the other hand, nowhere in the writings of Wilbur and Orville Wright is the suggestion that passengers equivalent in number to the entire population of Houston would each day hop aboard commercial aircraft somewhere in the United States.
Success at innovation will have a major impact on the quality of life in the years ahead as will failure. Perhaps a vaccine can be found to prevent cancer. Perhaps an effective means will be found of providing clean, inexhaustible, affordable energy for the entire planet. Perhaps there is a large asteroid hiding somewhere and intent upon destroying the Earth—a catastrophe that, through innovation, can perhaps be prevented. The quality of life in developed countries today heavily depends upon advancements in science and technology—and this is increasingly becoming the case for all the world's nations. But the benefits of scientific advancements often accrue, not simply to the individual investor but to society at large, thus making it essential that the general public support both education and research in science and technology. Only in this manner can our children and grandchildren hope to enjoy a standard of living higher than that of the generations that have preceded them.
So just turn the page for a fascinating and illuminating adventure into the world of innovation—written by an author who knows.
Norman R. Augustine
Retired Chairman and CEOLockheed Martin Corporation andChairman, National Academies “Gathering Storm”Committee on Competitiveness
Preface
We have made tremendous progress in the last two million years in comparison with the natural condition of mankind that is said to be “nasty, brutish, and short.” We live much longer and healthier, and we no longer need six children to ensure that two will survive to adulthood. We are no longer confined to live in tropical forests and savannas of East Africa; in fact, we can rather live almost anywhere on earth, from temperate farms to frigid cities. Inventions and technology are the most dynamic forces of change and progress in the world today, altering our lives and work at increasing speed, as well as our societies and environment. Our grandparents toiled much longer and harder compared to our 40 hours a week, and yet we produce four times as much food per acre of farmland. We can travel thousands of miles to visit friends and family, hear their voices on the telephone, and connect to the world through computers and the Internet. Every citizen of the world would benefit from knowing how inventions were made, how they have changed the world intentionally or unintentionally, and how to use and manage inventions wisely.
This book is the outcome of a freshman course at Princeton University, intended for future citizens and leaders. This book highlights some of the most important inventions in history, from the first stone axe 2 million years ago in East Africa to the current global connection through the computer and Internet. The inventions are from many geographical regions and civilizations of the earth, from East Africa to the Middle East, Europe, America, and Asia. My criteria for a great invention include satisfying a major need for many people over a long period of time, making a major advance in technology, and having long-term consequences in changing our standard of living. This book is organized around how we live and work rather than by time in history, by geographical regions and civilizations, or by types of technology. It is organized around tools and methods of production, food and shelter, health and security, transportation and information, and pleasure and culture. Major categories of inventions are listed and described, such as methods to grow food and make clothes. A few featured cases are treated in greater depth, such as the invention of penicillin by Alexander Fleming and other contributors, and the 10 year development effort to bring sufficient supply of penicillin for the D-Day invasion at Normandy and subsequently to the marketplace.
The inventors are described in their roles as creators and innovators, covering their backgrounds and preparations before their inventions, their motivations and methods, and their rewards, if any. After the invention, a few inventors remained actively involved in the entrepreneurial work of finance and development all the way to market success—like William Perkin and his invention of synthetic dyes, but most of them turned the tasks of development over to organizations with financial resources and staff with various needed talents, like Fleming with penicillin. When appropriate, the descriptions of the inventions include the underlying scientific principles, the advancements in new technology, the creation of new markets, and the major changes in the world of our work and our lives.
Great inventions lead to new eras in human history. The stone axe released us from our dependency on a few nature-given tools to solve a few problems into inventing many man-made tools to solve many problems. Fire enabled us to cook food and create ceramics and metals, as well as providing portable warmth to leave the tropics of Africa and move to the frozen north. Agriculture gave us abundant food, allowed us to abandon nomadic lives to settle in villages, improved nutrition and health, and increased life expectancy and birth rate. Writing and printing enabled us to record our history, stories, wisdom, observations and technology, and to communicate with people far off in space and with future generations. The steam engine provided tireless energy and power to industrialize mills and transportation. The computer and the Internet have connected the world and made globalization possible. The speed of the adoption of new inventions is uneven among world populations, which gives the early adopters distinct advantages over the late adopters or nonadopters, adding to the inequalities among people. The large-scale use of inventions can also lead to large-scale alterations in the natural ecology, favoring a few economically useful animal and plant species and suppressing others. The refuse and by-products of technology can also accumulate with time and cause damage to the environment.
Our expectations of a future with increasing prosperity and better quality of life depend on a continued stream of new inventions. We are besieged by shortages of resources like water and energy, by natural calamities of hurricanes and earthquakes, by epidemic diseases such as malaria and AIDS, and by the threats of terrorists and nuclear wars. We clamor for new inventions to solve these problems. However, a steady stream of great inventions is not an entitlement, but must be paid for by society with educational programs to train future scientists and engineers, by funding to support promising research, and by a reward system for successful inventors and innovative entrepreneurs. There are disturbing trends in recent years of decreasing support for inventions, so there are predictions that future rates of invention will not be adequate for our needs. This was eloquently pointed out by the National Academies report, “Rising Above the Gathering Storm,” and its subsequent sequel. We have a higher standard of living than our grandparents had, and we have much to do to ensure that our grandchildren can continue that trend.
I wish to acknowledge the many contributors to the writing of this book, beginning with the classes of students who took my freshman course and helped me to clarify which topics to include and how to explain them more clearly. Norman Augustine joined me to teach at Princeton and taught me authoritative perspectives on inventions from the views of governments and high-technology industries. Peter Bogucki gave me many ideas about the archaeology of early humans and brought me ancient stone axes that continue to inspire me. Tsering W. Shawa showed me how to make geographical maps to illustrate the stories of human diaspora. My greatest thanks are to my family. My children Alexander, Christina, and Natasha edited and improved chapters of the book and also assisted with photo acquisitions. My wife Virginia gave me continued support and encouragement, and this book is dedicated to her.
James Wei
Princeton University
Chapter 1
Introduction
An invention is usually considered a delightful new device or method that would make life better. Let us also look at some official definitions. The Oxford English Dictionary mentions that it could be a discovery, a fabrication, introduction of a new instrument, a design or plan, a figment of imagination, or a piece of music written by Bach.
The US Patent Office requires that for an invention to receive a patent, it should be new, inventive, and useful or industrially applicable. It is possible to be new without being inventive, such as a scientific discovery that may have no immediate practical application. The Patent Office defined four general categories of inventions: (a) a process or a method, (b) a machine, (c) a manufacture, and (d) a composition of matter. A significant improvement can be patentable, but an idea or suggestion must be accompanied with a complete description of the actual machine, and reduction to practice is often required. The patent gives the owner the exclusive right to use the invention for a number of years, such as 20 years, and can license the right to another party for considerations. The owner can also sue anyone infringing on the patent without a contract and payments. In practice, it is very easy to detect infringement on a patented product when it is sold in the market to many customers, and somewhat more difficult to detect the presence of a patented matter in a manufactured product. The most difficult to enforce is a patented machine or method that is installed in a factory not open to the public without a search warrant.
We usually think of inventions as providing the means to satisfy our material needs, such as for food, clothing, and shelter. For these purposes, we have invented the tools of agriculture, of spinning and weaving, and of beams and roofs. Our spiritual needs such as knowledge, beauty, truth, and justice are also supported by inventions and technology—including the ability to record and print words and pictures, and to communicate to people far away and to future generations. There are very few revolutionary breakthrough inventions on brand new technologies, such as penicillin and transistors. Most inventions are based on making improvements on an existing technology to make it more effective or efficient such as vulcanized rubber, or finding a new use for an old material such as using ether for painless surgery and childbirth.
What is a great invention? An invention adds to the store and power of technology, which bestows benefits (and sometimes harm) on our work, lives, society, and the environment. We value an invention according to a number of criteria including: (a) the audacity of the technology over the existing technologies, (b) the expansion of our capabilities to perform tasks that were considered impossible, and to open doors to exciting new possibilities, and (c) the valuable and long lasting benefits that it brings to many people.
The greatest inventions make dramatic breakthroughs, and open new eras in human history. Consider the lives of early men in East Africa about 4 million years ago without the sharp teeth of lions to tear meat. The stone axe was the first great invention that allowed our ancestors to eat the food of lions, and set us on the path of independence from our meager tools of teeth and claws bestowed by nature, as we could invent a whole arsenal of new and powerful tools. Fire led to the invention of cooking and softened tough meat and cereal as food, to ceramics and metallurgy, and to the colonization of the frozen north. Agriculture led to much greater and more secure food production, and allowed people to settle in villages and cities. The steam engine led to tireless power for manufacturing and transportation and to a burst of productivity increase and the Industrial Revolution. Modern sanitation and the germ theory lowered the rate of infant mortality, so that it is no longer necessary to have six children to ensure that two would survive to adulthood. Each generation of human society inherited a much bigger toolbox of technology from the previous generations, and can enrich it by the constant addition of ever more new inventions to benefit the next generation.
A drug that cures lung cancer would benefit millions of people, and would be considered more important than a drug for a rare disease that affects only thousands, according to the Jeremy Bentham principle of greatest happiness for the greatest numbers. Bentham also specified that happiness should be ranked by intensity, duration, and certainty. An invention that keeps us alive is more valued than an invention that improves our vanity; an invention that remains in use for many years is valued more than inventions that are quickly replaced; and a drug that always works is better than one that works only some of the time.
The direct benefits of an invention can be obvious, such as fire providing warmth and light. The unintended indirect benefits (or harm) are often slower in coming but can be far more important, such as fire leading to cooking which softened tough grains, and made possible pottery, bronze, and iron. The synthetic dye mauve was invented by William Perkin in 1856 and was used for only a short period of time before it was replaced by newer and better dyes, but its success inspired many chemists and entrepreneurs, and subsequently gave rise to many new synthetic dyes and synthetic drugs, such as sulfonamide. These new drugs became the foundation of the modern pharmaceutical industry, and saved millions of lives. Freon was a refrigerant introduced in 1920 that made possible safe home refrigerators without the hazards of fire and toxic leaks, but it accumulated in the atmosphere for many decades and led to the ozone hole and global warming, which made it no longer suitable.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
