101,99 €
Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery.
This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review of clustering analysis in bioinformatics from the fundamentals through to state-of-the-art techniques and applications.
Key Features:
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 819
Veröffentlichungsjahr: 2015
Cover
Title page
Preface
List of Symbols
About the Authors
Part One: Introduction
1 Introduction to Bioinformatics
1.1 Introduction
1.2 The “Omics” Era
1.3 The Scope of Bioinformatics
1.4 What Do Information Engineers and Biologists Need to Know?
1.5 Discussion and Summary
References
2 Computational Methods in Bioinformatics
2.1 Introduction
2.2 Machine Learning and Data Mining
2.3 Optimisation
2.4 Image Processing: Bioimage Informatics
2.5 Network Analysis
2.6 Statistical Analysis
2.7 Software Tools and Technologies
2.8 Discussion and Summary
References
Part Two: Introduction to Molecular Biology
3 The Living Cell
3.1 Introduction
3.2 Prokaryotes and Eukaryotes
3.3 Multicellularity
3.4 Cell Components
3.5 Discussion and Summary
References
4 Central Dogma of Molecular Biology
4.1 Introduction
4.2 Central Dogma of Molecular Biology Overview
4.3 Proteins
4.4 DNA
4.5 RNA
4.6 Genes
4.7 Transcription and Post-transcriptional Processes
4.8 Translation and Post-translational Processes
4.9 Discussion and Summary
References
Part Three: Data Acquisition and Pre-processing
5 High-throughput Technologies
5.1 Introduction
5.2 Microarrays
5.3 Next-generation Sequencing (NGS)
5.4 ChIP on Microarrays and Sequencing
5.5 Discussion and Summary
References
6 Databases, Standards and Annotation
6.1 Introduction
6.2 NCBI Databases
6.3 The EBI Databases
6.4 Species-specific Databases
6.5 Discussion and Summary
References
7 Normalisation
7.1 Introduction
7.2 Issues Tackled by Normalisation
7.3 Normalisation Methods
7.4 Discussion and Summary
References
8 Feature Selection
8.1 Introduction
8.2 FS and FG – Problem Definition
8.3 Consecutive Ranking
8.4 Individual Ranking
8.5 Principal Component Analysis
8.6 Genetic Algorithms and Genetic Programming
8.7 Discussion and Summary
References
9 Differential Expression
9.1 Introduction
9.2 Fold Change
9.3 Statistical Hypothesis Testing – Overview
9.4 Statistical Hypothesis Testing – Methods
9.5 Discussion and Summary
References
Part Four: Clustering Methods
10 Clustering Forms
10.1 Introduction
10.2 Proximity Measures
10.3 Clustering Families
10.4 Clusters and Partitions
10.5 Discussion and Summary
References
11 Partitional Clustering
11.1 Introduction
11.2
k
-Means and its Applications
11.3
k
-Medoids and its Applications
11.4 Discussion and Summary
References
12 Hierarchical Clustering
12.1 Introduction
12.2 Principles
12.3 Discussion and Summary
References
13 Fuzzy Clustering
13.1 Introduction
13.2 Principles
13.3 Discussion
References
14 Neural Network-based Clustering
14.1 Introduction
14.2 Algorithms
14.3 Discussion
References
15 Mixture Model Clustering
15.1 Introduction
15.2 Finite Mixture Models
15.3 Infinite Mixture Models
15.4 Discussion
References
16 Graph Clustering
16.1 Introduction
16.2 Basic Definitions
16.3 Graph Clustering
16.4 Resources
16.5 Discussion
References
17 Consensus Clustering
17.1 Introduction
17.2 Overview
17.3 Consensus Functions
17.4 Discussion
References
18 Biclustering
18.1 Introduction
18.2 Overview
18.3 Biclustering Methods
18.4 Discussion
References
19 Clustering Methods Discussion
19.1 Introduction
19.2 Hierarchical Clustering
19.3 Fuzzy Clustering
19.4 Neural Network-based Clustering
19.5 Mixture Model-based Clustering
19.6 Graph-based Clustering
19.7 Consensus Clustering
19.8 Biclustering
19.9 Summary
References
Part Five: Validation and Visualisation
20 Numerical Validation
20.1 Introduction
20.2 External Criteria
20.3 Internal Criteria
20.4 Relative Criteria
20.5 Discussion and Summary
References
21 Biological Validation
21.1 Introduction
21.2 GO Analysis
21.3 Upstream Sequence Analysis
21.4 Gene-network Analysis
21.5 Discussion and Summary
References
22 Visualisations and Presentations
22.1 Introduction
22.2 Methods and Examples
22.3 Summary
References
Part Six: New Clustering Frameworks Designed for Bioinformatics
23 Splitting-Merging Awareness Tactics (SMART)
23.1 Introduction
23.2 Related Work
23.3 SMART Framework
23.4 Implementations
23.5 Enhanced SMART
23.6 Examples
23.7 Discussion
References
24 Tightness-tunable Clustering (UNCLES)
24.1 Introduction
24.2 Bi-CoPaM Method
24.3 UNCLES Method - Other Types of External Specifications
24.4 M–N Scatter Plots Technique
24.5 Parameter-free UNCLES with M–N Plots
24.6 Discussion and Summary
References
Appendix
High-throughput Data Resources
Normalisation Methods
Feature-selection Methods
Differential Expression Methods
Partitional Clustering Algorithms
MATLAB Linkage Functions
Fuzzy Clustering Algorithms
Neural Network-based Clustering Methods
Mixture Model-based Clustering Methods
Graphs and Networks File Formats and Storage
Graph-clustering Algorithms
Consensus Clustering Algorithms
Biclustering Algorithms
References
Index
End User License Agreement
Chapter 04
Table 4.1 The 20 amino acids
Table 4.2 The genetic code: mapping the three-base mRNA codons to their corresponding amino acids
Chapter 06
Table 6.1 High-throughput data resources
Chapter 07
Table 7.1 Normalisation software packages
Chapter 08
Table 8.1 Resources for feature selection and FG methods
Chapter 09
Table 9.1 Contingency matrix for Fisher’s exact test over the
j
th gene
Table 9.2 Differential expression analysis software packages
Chapter 10
Table 10.1 Summary of the dissimilarity and the similarity measures of continuous feature objects
Chapter 11
Table 11.1 The basic procedure of
k
-means
Table 11.2 The Kaufman approach (KA)
Table 11.3 Examples of popular kernel functions
Table 11.4 The basic procedure of spherical
k
-means
Table 11.5 Summary of genetic
k
-means
Table 11.6 Summary of all partitional clustering algorithms introduced in this chapter
Chapter 12
Table 12.1 Specifications of all agglomerative hierarchical clustering methods
Table 12.2 The general procedure of agglomerative hierarchical clustering
Table 12.3 Specifications of all agglomerative hierarchical clustering methods
Chapter 13
Table 13.1 The procedure of fuzzy
c
-means
Table 13.2 Summary of the publicly accessible resources of fuzzy clustering algorithms
Chapter 14
Table 14.1 Summary of the clustering process of SOM by Kohonen (1990)
Table 14.2 Summary of the variants of ART
Table 14.3 Summary of theSOON-1 algorithm
Table 14.4 Summary of the SOON-2 algorithm
Table 14.5 Collection of publicly accessible resources for neural network-based clustering
Chapter 15
Table 15.1 Ten covariance structures are characterised based on the parameterisations
Table 15.2 Eight covariance structures are characterised based on the constraints
Table 15.3 Summary of mixture model-based clustering algorithms
Table 15.4 Collection of publicly accessible resources for mixture model-based clustering
Chapter 16
Table 16.1 Summary of the normalised cut graph partitioning algorithm
Table 16.2 Summary of the spectral clustering algorithm by Ng, Jordan and Weiss (2001)
Table 16.3 Summary of spectral modularity optimisation algorithm by Newman (2006)
Table 16.4 Summary of file formats as a storage of graphs and network
Table 16.5 Summary of graph clustering algorithms mentioned in this chapter
Chapter 17
Table 17.1 Summary of consensus clustering algorithms mentioned in this chapter
Chapter 18
Table 18.1 Summary of biclustering algorithms
Chapter 20
Table 20.1 Contingency table
Table 20.2 Summarisation of the capabilities and limitations of all CV introduced in this chapter. The capabilities that we refer to are what validation work they can do and what requirements they need; namely, (G) if the
g
round truth is needed, (A) if the clustering
a
lgorithms can be validated, (P) if the
p
artitions can be validated, (F) if the
f
uzzy partitions can be validated, (C) if the
c
risp partitions can be validated, (K) if the number of clusters
K
can be estimated, (O) if the
o
bject validity can be provided, (SC) if the
s
ingle-
c
luster validity can be provided, (NR) if it has
n
oise-
r
esistance ability, (MB) if it is probabilistic
m
odel-
b
ased criterion, and what the level of its computational complexity is. In this table, ‘Yes’ means that the validation algorithm has the capability and ‘No’ means it has not. ‘?’ Means that it is not a definite ‘Yes’ or ‘No’
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
