Mastering Microsoft Power BI - Brett Powell - E-Book

Mastering Microsoft Power BI E-Book

Brett Powell

0,0
40,79 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Design, create and manage robust Power BI solutions to gain meaningful business insights

Key Features

  • Master all the dashboarding and reporting features of Microsoft Power BI
  • Combine data from multiple sources, create stunning visualizations and publish your reports across multiple platforms
  • A comprehensive guide with real-world use cases and examples demonstrating how you can get the best out of Microsoft Power BI

Book Description

This book is intended for business intelligence professionals responsible for the design and development of Power BI content as well as managers, architects and administrators who oversee Power BI projects and deployments. The chapters flow from the planning of a Power BI project through the development and distribution of content to the administration of Power BI for an organization.

BI developers will learn how to create sustainable and impactful Power BI datasets, reports, and dashboards. This includes connecting to data sources, shaping and enhancing source data, and developing an analytical data model. Additionally, top report and dashboard design practices are described using features such as Bookmarks and the Power KPI visual.

BI managers will learn how Power BI’s tools work together such as with the On-premises data gateway and how content can be staged and securely distributed via Apps. Additionally, both the Power BI Report Server and Power BI Premium are reviewed.

By the end of this book, you will be confident in creating effective charts, tables, reports or dashboards for any kind of data using the tools and techniques in Microsoft PowerBI.

What you will learn

  • Build efficient data retrieval and transformation processes with the Power Query M Language
  • Design scalable, user-friendly DirectQuery and Import Data Models
  • Develop visually rich, immersive, and interactive reports and dashboards
  • Maintain version control and stage deployments across development, test, and production environments
  • Manage and monitor the Power BI Service and the On-premises data gateway
  • Develop a fully on-premise solution with the Power BI Report Server
  • Scale up a Power BI solution via Power BI Premium capacity and migration to Azure Analysis Services or SQL Server Analysis Services

Who this book is for

Business Intelligence professionals and existing Power BI users looking to master Power BI for all their data visualization and dashboarding needs will find this book to be useful. While understanding of the basic BI concepts is required, some exposure to Microsoft Power BI will be helpful.

Brett Powell is the owner of Frontline Analytics, a data and analytics consulting firm and Microsoft Power BI partner. He has worked with Power BI technologies since they were first introduced with the Power Pivot add-in for Excel 2010 and has contributed to the design and delivery of Microsoft BI solutions across retail, manufacturing, finance, and professional services. He is also the author of Microsoft Power BI Cookbook and a regular speaker at Microsoft technology events such as the Power BI World Tour and the Data & BI Summit. He regularly shares technical tips and examples on his blog, Insight Quest, and is a co-organizer of the Boston BI User Group.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 773

Veröffentlichungsjahr: 2018

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Mastering Microsoft Power BI

 

 

 

 

 

 

 

Expert techniques for effective data analytics and business intelligence

 

 

 

 

 

 

 

 

 

 

Brett Powell

 

 

 

 

 

 

 

 

 

BIRMINGHAM - MUMBAI

Mastering Microsoft Power BI

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Amey VarangaonkarAcquisition Editor:Divya PoojariContent Development Editor: Amrita NoronhaTechnical Editor: Sneha HanchateCopy Editors: Safis Editing, Vikrant PhadkayProject Coordinator:Shweta BirwatkarProofreader: Safis EditingIndexer:Aishwarya GangawaneGraphics:Jisha ChirayilProduction Coordinator:Shantanu Zagade

First published: March 2018

Production reference: 1280318

Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN 978-1-78829-723-3

www.packtpub.com

 

To my mother, Cathy, and my brother, Dustin. I love you both.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at [email protected] for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Contributors

About the author

Brett Powell is the owner of Frontline Analytics, a data and analytics consulting firm and Microsoft Power BI partner. He has worked with Power BI technologies since they were first introduced with the Power Pivot add-in for Excel 2010 and has contributed to the design and delivery of Microsoft BI solutions across retail, manufacturing, finance, and professional services. He is also the author ofMicrosoft Power BI Cookbook and a regular speaker at Microsoft technology events such as the Power BI World Tour and the Data & BI Summit. He regularly shares technical tips and examples on his blog, Insight Quest, and is a co-organizer of the Boston BI User Group.  

I'd like to thank Packt for giving me this opportunity, the content and technical editing teams, and particularly Divya Poojari, acquisition editor, and Amrita Noronha, senior content development editor. As Power BI continues to evolve, it is necessary to be flexible with the outline and page counts, and I greatly appreciated this autonomy.

About the reviewer

Ruben Oliva Ramos is a computer engineer from Tecnologico of León Institute, with a master's degree in computer and electronics systems engineering and networking specialization from the University of Salle Bajio. He has more than 5 years' experience of developing web apps to control and monitor devices connected to Arduino and Raspberry Pi, using web frameworks and cloud services to build IoT applications. He has authored Raspberry Pi 3 Home Automation Projects, Internet of Things Programming with JavaScript, Advanced Analytics with R and Tableau, and SciPy Recipes for Packt.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Table of Contents

Title Page

Copyright and Credits

Mastering Microsoft Power BI

Dedication

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Reviews

Planning Power BI Projects

Power BI deployment modes

Corporate BI

Self-Service Visualization

Self-Service BI

Choosing a deployment mode

Project discovery and ingestion

Sample Power BI project template 

Sample template – Adventure Works BI

Power BI project roles

Dataset designer

Report authors

Power BI admin

Project role collaboration

Power BI licenses

Power BI license scenarios

Power BI Premium features

Data warehouse bus matrix

Dataset design process

Selecting the business process

Declaring the grain

Identifying the dimensions

Defining the facts

Data profiling

Dataset planning

Data transformations

Import versus DirectQuery

Import mode 

DirectQuery mode

Sample project analysis

Summary

Connecting to Sources and Transforming Data with M

Query design per dataset mode

Import mode dataset queries

DirectQuery dataset queries

Data sources

Authentication

Data source settings

Privacy levels

Power BI as a data source

Power BI Desktop options

Global options

CURRENT FILE options

SQL views

SQL views versus M queries

SQL view examples

Date dimension view

Mark As Date Table

Product Dimension view

Slowly-changing dimensions

M queries

Data Source Parameters

Staging Queries

DirectQuery staging

Fact and dimension queries

Source Reference Only

M query summary

Excel workbook – Annual Sales Plan

Data types

Item access in M

DirectQuery report execution

Bridge Tables Queries

Parameter Tables

Security Tables

Query folding

Partial query folding

M Query examples

Trailing three years filter

Customer history column

Derived column data types

Product dimension integration

R script transformation

M editing tools

Advanced Editor

Visual Studio Code

Visual Studio

Summary

Designing Import and DirectQuery Data Models

Dataset layers

Dataset objectives

Competing objectives

External factors

The Data Model 

The Relationships View

The Data View

The Report View

Fact tables

Fact table columns

Fact column data types

Fact-to-dimension relationships

Dimension tables

Hierarchies

Custom sort

Bridge tables

Parameter tables

Measure groups

Last refreshed date

Measure support logic

Relationships

Uniqueness 

Ambiguity

Single-direction relationships

Direct flights only

Bidirectional relationships

Shared dimensions

Date dimensions 

The CROSSFILTER function

Model metadata

Visibility

Column metadata

Default Summarization

Data format

Data category

Field descriptions

Optimizing performance

Import

Columnar compression

Memory analysis via DMVs

DirectQuery 

Optimized DAX functions

Columnstore and HTAP

Summary

Developing DAX Measures and Security Roles

DAX measures

Filter context

SQL equivalent

Measure evaluation process

Row context

Scalar and table functions

The CALCULATE() function

Related tables

The FILTER() function

DAX variables

Base measures

Measure support expressions

KPI Targets

Current and prior periods

Date intelligence metrics

Current versus prior and growth rates

Rolling periods

Dimension metrics

Missing dimensions

Ranking metrics

Dynamic ranking measures

Security roles

Dynamic row-level security

Performance testing

DAX Studio

Tracing a Power BI dataset via DAX Studio

Summary

Creating and Formatting Power BI Reports

Report planning

Power BI report architecture

Live connections to Power BI datasets

Customizing Live connection reports

Switching source datasets

Visualization best practices

Visualization anti-patterns

Choosing the visual

Tables versus charts

Chart selection

Visual interactions

Edit interactions

What-if parameters

Slicers

Slicer synchronization

Custom slicer parameters

Report filter scopes

Report filter conditions

Report and page filters

Page filter or slicer?

Relative date filtering

Visual-level filtering

Top N visual-level filters

Visualization formatting

Visual-level formatting

Line and column charts

Tooltips

Report page tooltips

Column and line chart conditional formatting

Column chart conditional formatting

Line chart conditional formatting

Table and matrix

Table and matrix conditional formatting

Values as rows

Scatter charts

Map visuals

Bubble map

Filled map

Mobile-optimized reports

Responsive visuals

Report design summary

Summary

Applying Custom Visuals, Animation, and Analytics

Drillthrough report pages

Custom labels and the back button

Multi-column drillthrough

Bookmarks

Selection pane and the Spotlight property

Custom report navigation

View mode

ArcGIS Map visual for Power BI

ArcGIS Maps Plus subscriptions

Waterfall chart breakdown

Analytics pane

Trend Line

Forecast line

Quick Insights 

Explain the increase/decrease

Custom visuals

Adding a custom visual

Power KPI visual

Chiclet Slicer

Impact Bubble Chart

Dot Plot by Maq Software

Animation and data storytelling

Play axis for scatter charts

Pulse Chart

Summary

Designing Power BI Dashboards and Architectures

Dashboards versus reports

Dashboard design

Visual selection

Layout

Navigation pane

Full screen mode

Supporting tiles

Custom date filters

Multi-dashboard architectures

Single-dashboard architecture

Multiple-dashboard architecture

Organizational dashboard architecture

Multiple datasets

Dashboard tiles

Tile details and custom links

Images and text boxes

SQL Server Reporting Services

Excel workbooks

Live report pages

Mobile-optimized dashboards

Summary

Managing Application Workspaces and Content

Application workspaces

Workspace roles and rights

Workspace admins

Workspace members

My Workspace

Staged deployments

Workspace datasets

Power BI REST API

Client application ID

Workspace and content IDs

PowerShell sample scripts

Dashboard data classifications

Version control

OneDrive for Business version history

Source control for M and DAX code

Metadata management

Field descriptions

Creating descriptions

View field descriptions

Metadata reporting

Query field descriptions

Standard metadata reports

Server and database parameters

Querying the DMVs from Power BI

Integrating and enhancing DMV data

Metadata report pages

Summary

Managing the On-Premises Data Gateway

On-premises data gateway planning

Top gateway planning tasks

Determining whether a gateway is needed

Identifying where the gateway should be installed

Defining the gateway infrastructure and hardware requirements

On-premises data gateway versus personal mode

Gateway clusters

Gateway architectures

Gateway security

Gateway configuration

The gateway service account

TCP versus HTTPS mode 

Managing gateway clusters

Gateway administrators

Gateway data sources and users

PowerShell support for gateway clusters

Troubleshooting and monitoring gateways

Restoring, migrating, and taking over a gateway

Gateway log files

Performance Monitor counters

Scheduled data refresh

DirectQuery datasets

Single sign-on to DirectQuery sources via Kerberos

Live connections to Analysis Services models

Azure Analysis Services refresh

Dashboard cache refresh

Summary

Deploying the Power BI Report Server

Planning for the Power BI Report Server

Feature differences with the Power BI service

Parity with SQL Server Reporting Services

Data sources and connectivity options

Hardware and user licensing

Pro licenses for report authors

Alternative and hybrid deployment models

Report Server reference topology

Installation

Hardware and software requirements

Analysis Services Integrated

Retrieve the Report Server product key

Migrating from SQL Server Reporting Services

Configuration

Service Account

Remote Report Server Database

Office Online Server for Excel Workbooks

Upgrade cycles 

Report Server Desktop Application

Running desktop versions side by side

Report Server Web Portal

Scheduled data refresh

Data source authentication

Power BI mobile applications

Report server administration

Securing Power BI report content

Execution logs

Scale Power BI Report Server

Summary

Creating Power BI Apps and Content Distribution

Content distribution methods

Power BI apps

Licensing apps

App deployment process

User permissions

Publishing apps

Installing apps

Apps on Power BI mobile

App updates

Dataset-to-workspace relationship

Self-Service BI workspace

Self-Service content distribution

Risks to Self-Service BI

Sharing dashboards and reports

Sharing scopes

Sharing versus Power BI apps

SharePoint Online embedding

Custom application embedding

Publish to web

Data alerts

Microsoft Flow integration

Email Subscriptions

Analyze in Excel

Power BI Publisher for Excel

Summary

Administering Power BI for an Organization

Data governance for Power BI

Implementing data governance

Azure Active Directory

Azure AD B2B collaboration

Licensing external users

Conditional access policies

Power BI Admin Portal

Usage metrics

Users and Audit logs

Tenant settings

Embed Codes

Organizational Custom visuals

Usage metrics reports

Audit logs

Audit log monitoring solutions

Audit logs solution template

Power BI Premium capacities

Capacity allocation

Create, size, and monitor capacities

Change capacity size

Monitor premium capacities

App workspace assignment

Capacity admins

Summary

Scaling with Premium and Analysis Services

Power BI Premium

Power BI Premium capabilities

Corporate Power BI datasets

Limitation of Corporate BI datasets – Reusability

Premium capacity nodes

Frontend versus backend resources

Power BI Premium capacity allocation

Corporate and Self-Service BI capacity 

Power BI Premium resource utilization

Data model optimizations

Report and visualization optimizations

Premium capacity estimations

Analysis Services

Analysis Services Models versus Power BI Desktop

Scale

Usability

Development and management tools

Azure Analysis Services versus SSAS

SSAS to Azure AS Migration

Provision Azure Analysis Services 

Migration of Power BI Desktop to Analysis Services

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Microsoft Power BI is a leading business intelligence and analytics platform that supports both self-service data visualization and exploration as well as enterprise BI deployments. Power BI consists of cloud services, mobile applications, a data modeling and report authoring application, and other utilities, including the On-premises data gateway. Additionally, organizations can deploy Power BI reports on-premise via the Power BI Report Server and scale their deployments with Power BI Premium capacity and Analysis Services.

This book provides an end-to-end analysis of Power BI tools and features, from planning a Power BI project to distributing Power BI apps to large groups of users. You'll be familiarized with all the fundamental concepts and see how Power BI datasets, reports, and dashboards can be designed to deliver insights and rich, interactive experiences. You'll also become knowledgeable about management and administration topics such as the allocation of Power BI Premium capacities, Azure Active Directory security groups, conditional access policies, and staged deployments of Power BI content. This book will encourage you to take advantage of these powerful features and follow thoughtful, consistent practices in deploying Power BI for your organization.

Who this book is for

This book is intended for business intelligence professionals responsible for either the development of Power BI solutions or the management and administration of a Power BI deployment. BI developers can use this as a reference guide to features and techniques to enhance their solutions. Likewise, BI managers interested in a broad conceptual understanding, as well as processes and practices to inform their delivery of Power BI, will find this a useful resource. Experience of creating content on Power BI Desktop and sharing content on the Power BI service will be helpful.          

What this book covers

Chapter 1, Planning Power BI Projects, discusses alternative deployment modes for Power BI, team and project roles, and licensing. Additionally, an example project template and its corresponding planning and dataset design processes are described.    

Chapter 2, Connecting to Sources and Transforming Data with M, depicts the data access layer supporting a Power BI dataset, including data sources and fact and dimension table queries. Concepts of the Power Query M language, such as query folding and parameters, are explained and examples of custom M queries involving conditional and dynamic logic are given.    

Chapter 3, Designing Import and DirectQuery Data Models, reviews the components of the data model layer and design techniques in support of usability, performance, and other objectives. These topics include relationship cross-filtering, custom sort orders, hierarchies, and metadata.   

Chapter 4, Developing DAX Measures and Security Roles, covers the implementation of analysis expressions reflecting business definitions and common analysis requirements. Primary DAX functions, concepts, and use cases such as date intelligence, row-level security roles, and performance testing are examined.

Chapter 5, Creating and Formatting Power BI Reports, describes a report planning process, data visualization practices, and report design fundamentals, including visual selection and filter scopes. Top report development features, such as slicer visuals, tool tips, and conditional formatting are also reviewed. 

Chapter 6, Applying Custom Visuals, Animation, and Analytics, examines powerful interactive and analytical features, including drillthrough report pages, bookmarks, the Analytics pane, ArcGIS Maps, and the waterfall charts. Additionally, examples of custom visuals, such as the Power KPI, and the capabilities of animation to support data storytelling are provided.  

Chapter 7, Designing Power BI Dashboards and Architectures, provides guidance on visual selection, layout, and supporting tiles to drive effective dashboards. Alternative multi-dashboard architectures, such as an organizational dashboard architecture, are reviewed, is the configuration of dashboard tiles and mobile optimized dashboards.

Chapter 8, Managing Application Workspaces and Content, features the role and administration of app workspaces in the context of Power BI solutions and staged deployments. Additionally, the Power BI REST API, content management features, and practices are reviewed, including field descriptions and version history. 

Chapter 9, Managing the On-Premises Data Gateway, covers top gateway planning considerations, including alternative gateway architectures, workloads, and hardware requirements. Gateway administration processes and tools are described, such as the manage gateways portal, gateway log files, and PowerShell Gateway commands. 

Chapter 10, Deploying the Power BI Report Server, contrasts the Power BI Report Server with the Power BI cloud service and provides guidance on deployment topics such as licensing, reference topology, configuration, administration, and upgrade cycles.    

Chapter 11, Creating Power BI Apps and Content Distribution, walks through the process of publishing and updating apps for groups of users. Additionally, other common distribution methods are covered, such as the sharing of reports and dashboards, email subscriptions, data-alert-driven emails, and embedding Power BI content in SharePoint Online.

Chapter 12, Administering Power BI for an Organization, highlights data governance for self-service and corporate BI, Azure Active Directory features such as Conditional Access Policies, and the Power BI admin portal. Details are provided about configuring Power BI service tenant settings, managing Power BI Premium capacities, and the tools available to monitor Power BI activities.   

Chapter 13, Scaling with Premium and Analysis Services, reviews the capabilities of Power BI Premium and alternative methods for allocating premium capacity. Additionally, Power BI datasets are contrasted with Analysis Services models, Azure Analysis Services is contrasted with SQL Server Analysis Services, and the migration of a Power BI dataset to an Analysis Services model is described.  

To get the most out of this book

A Power BI Pro license and access to the Power BI service is necessary to follow many of the topics and examples in this book. The assignment of the Power BI Service Administrator role within the Office 365 admin center, as well as administrative access to an On-premises data gateway, would also be helpful for the second half of this book. It's assumed that readers are familiar with the main user interfaces of Power BI Desktop and have some background in business intelligence or information technology.   

The primary data source for the examples in this book was the AdventureWorks data warehouse sample database for SQL Server 2016 CTP3. A SQL Server 2017 Developer Edition database engine instance was used to host the sample database. For the import mode dataset, an Excel workbook stored the sales plan data. For the DirectQuery dataset, the sales plan data was stored in the sample SQL Server database.

The AdventureWorksDW2016CTP3 sample database can be downloaded from the following URL: https://www.microsoft.com/en-us/download/details.aspx?id=49502. Editions of SQL Server 2017 are available for download from the following URL: https://www.microsoft.com/en-us/sql-server/sql-server-downloads.

The Power BI Desktop files and specific queries and scripts utilized in the book are included in the code bundle. However, the source data and database are not included in the code bundle. Additionally, the database used by the book contains objects not included in the downloadable sample database, such as SQL views for each fact and dimension table. Therefore, even with access to a SQL Server 2017 database engine instance and the sample AdventureWorks data warehouse database, the examples in the book cannot be completely reproduced.

Download the example code files

You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at

www.packtpub.com

.

Select the

SUPPORT

tab.

Click on

Code Downloads & Errata

.

Enter the name of the book in the

Search

box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

WinRAR/7-Zip for Windows

Zipeg/iZip/UnRarX for Mac

7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/MasteringMicrosoftPowerBI_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

SELECTP.ProductKey as 'Product Key', P.ProductAlternateKey as 'Product Alternate Key', P.EnglishProductName AS 'Product Name', ISNULL(S.EnglishProductSubcategoryName, 'Undefined') 'ProductSubcategory'

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

Internet Sales Amount (Import) =SUMX('Internet Sales','Internet Sales'[Order Quantity]*'InternetSales'[Unit Price])Internet Sales Amount (DirectQuery) =SUM('Internet Sales'[Sales Amount])

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.
Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email [email protected] and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at [email protected].

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at [email protected] with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

Planning Power BI Projects

In this chapter, we will walk through a Power BI project planning process from the perspective of an organization with an on-premises data warehouse and a supporting nightly extract-transform-load (ETL) process but no existing SSAS servers or IT-approved Power BI datasets. The business intelligence team will be responsible for the development of a Power BI dataset, including source queries, relationships, and metrics, in addition to a set of Power BI reports and dashboards.

Almost all business users will consume the reports and dashboards in the Power BI online service and via the Power BI mobile apps, but a few business analysts will also require the ability to author Power BI and Excel reports for their teams based on the new dataset. Power BI Pro licenses and Power BI Premium capacity will be used to support the development, scalability, and distribution requirements of the project.

In this chapter, we will review the following topics:

Power BI deployment modes

Project discovery and ingestion

Power BI project roles

Power BI licenses

Dataset design process

Dataset planning

Import and DirectQuery datasets

Power BI deployment modes

Organizations can choose to deliver and manage their Power BI deployment through IT and standard project workflows or to empower certain business users to take advantage of Self-Service BI capabilities with tools such as Power BI Desktop and Excel. In many scenarios, a combination of IT resources, such as the On-premises data gateway and Power BI Premium capacity, can be combined with the business users' knowledge of requirements and familiarity with data analysis and visualization.

Organizations may also utilize alternative deployment modes per project or with different business teams based on available resources and the needs of the project. The greatest value from Power BI deployments can be obtained when the technical expertise and governance of Corporate BI solutions are combined with the data exploration and analysis features, which can be made available to all users. The scalability and accessibility of Power BI solutions to support thousands of users, including read-only users who have not been assigned Power BI Pro licenses, is made possible by provisioning Power BI Premium capacity, as described in the final three chapters of this book.

Corporate BI

The Corporate BI delivery approach in which the BI team develops and maintains both the Power BI dataset (data model) and the required report visualizations is a common deployment option, particularly for large-scale projects and projects with executive-level sponsors or stakeholders. This is the approach followed in this chapter and throughout this book, as it offers maximum control over top BI objectives, such as version control, scalability, usability, and performance.

However, as per the following Power BI deployment modes diagram, there are other approaches in which business teams own or contribute to the solution: 

Power BI deployment modes

A Power BI dataset is a semantic data model composed of data source queries, relationships between dimensions and fact tables, and measurement calculations. The Power BI Desktop application can be used to create datasets as well as merely connect to existing datasets to author Power BI reports. The Power BI Desktop shares the same data retrieval and modeling engines as the latest version of SQL Server Analysis Services (SSAS) in tabular mode and Azure Analysis Services, Microsoft's enterprise BI modeling solution.Many BI/IT organizations utilize Analysis Services models as the primary data source for Power BI projects and it's possible to migrate Power BI Desktop files (.pbix) to Analysis Services models, as described in Chapter 13,Scaling with Premium and Analysis Services.

Self-service approaches can benefit both IT and business teams, as they can reduce IT resources, project timelines, and provide the business with a greater level of flexibility as their analytical needs change. Additionally, Power BI projects can be migrated across deployment modes over time as required skills and resources change. However, greater levels of self-service and shared ownership structures can also increase the risk of miscommunication and introduce issues of version control, quality, and consistency.

Self-Service Visualization

In the Self-Service Visualization approach, the dataset is created and maintained by the IT organization's BI team, but certain business users with Power BI Pro licenses create reports and dashboards for consumption by other users. In many scenarios, business analysts are already comfortable with authoring reports in Power BI Desktop (or, optionally, Excel) and can leverage their business knowledge to rapidly develop useful visualizations and insights. Given ownership of the dataset, the BI team can be confident that only curated data sources and standard metric definitions are used in reports and can ensure that the dataset remains available, performant, and updated, or refreshed as per business requirements.

Self-Service BI

In the Self-Service BI approach, the BI organization only contributes essential infrastructure and monitoring, such as the use of an On-premises data gateway and possibly Power Premium capacity to support the solution. Since the business team maintains control of both the dataset and the visualization layer, the business team has maximum flexibility to tailor its own solutions including data source retrieval, transformation, and modeling. This flexibility, however, can be negated by a lack of technical skills (for example, DAX measures) and a lack of technical knowledge such as the relationships between tables in a database. Additionally, business-controlled datasets can introduce version conflicts with corporate semantic models and generally lack the resilience, performance, and scalability of IT-owned datasets.

It's usually necessary or at least beneficial for BI organizations to own the Power BI datasets or at least the datasets which support important, widely distributed reports and dashboards. This is primarily due to the required knowledge of dimensional modeling best practices and the necessary technical skills in the M and DAX functional languages to develop sustainable datasets. Additionally, BI organizations require control of datasets to implement row-level security (RLS) and to maintain version control. Therefore, small datasets initially created by business teams are often migrated to the BI team and either integrated into larger models or rationalized given the equivalent functionality from an existing dataset.

Choosing a deployment mode

Larger organizations with experience of deploying and managing Power BI often utilize a mix of deployment modes depending on the needs of the project and available resources. For example, a Corporate BI solution with a set of standard IT developed reports and dashboards distributed via a Power BI app may be extended by assigning Power BI Pro licenses to certain business users who have experience or training in Power BI report design. These users could then leverage the existing data model and business definitions maintained by IT to create new reports and dashboards and distribute this content in a separate Power BI app to distinguish ownership. 

An app workspace is simply a container of datasets, reports, and dashboards in the Power BI cloud service that can be distributed to large groups of users. A Power BI app represents the published version of an app workspace in the Power BI service and workspace. Members can choose which items in the workspace are included in the published Power BI app. See Chapter 8, Managing Application Workspaces and Power BI Content, and Chapter 11, Creating Power BI Apps and Content Distribution, for greater detail on app workspaces and apps, respectively.

Another common scenario is a proof-of-concept (POC) or small-scale self-service solution developed by a business user or a team to be transitioned to a formal, IT-owned, and managed solution. Power BI Desktop's rich graphical interfaces at each layer of the application (query editor, data model, and report canvas) make it possible and often easy for users to create useful models and reports with minimal experience and little to no code. It's much more difficult, of course, to deliver consistent insights across business functions (that is, finance, sales, and marketing) and at scale in a secure, governed environment. The IT organization can enhance the quality and analytical value of these assets as well as provide robust governance and administrative controls to ensure that the right data is being accessed by the right people.

The following list of fundamental questions will help guide a deployment mode decision:

Who will own the data model?

Experienced dataset designers and other IT professionals are usually required to support complex data transformations, analytical data modeling, large data sizes, and security rules, such as RLS roles, as described in

Chapter 4

Developing DAX Measures and Security Roles

If the required data model is relatively small and simple, or if the requirements are unclear, the business team may be best positioned to create at least the initial iterations of the model

The data model could be created with Analysis Services or Power BI Desktop

Who will own the reports and dashboards?

Experienced Power BI report developers with an understanding of corporate standards and data visualization best practices can deliver a consistent user experience

Business users can be trained on report design and development practices and are well-positioned to manage the visualization layer, given their knowledge of business needs and questions

How will the Power BI content be managed and distributed?

A staged deployment across development, test, and production environments, as described in

Chapter 8

,

Managing Application Workspaces and Content

, helps to ensure that quality, validated content is published. This approach is generally exclusive to Corporate BI projects.

Sufficient Power BI Premium capacity is required to support distribution to Power BI Free users and either large datasets or demanding query workloads.

Self-Service BI content can be assigned to Premium Capacity, but organizations may wish to limit the scale or scope of these projects to ensure that provisioned capacity is being used efficiently.

Project discovery and ingestion

A set of standard questions within a project template form can be used to initiate Power BI projects. Business guidance on these questions informs the BI team of the high-level technical needs of the project and helps to promote a productive project kickoff.

By reviewing the project template, the BI team can ask the project sponsor or relevant subject matter experts (SMEs) targeted questions to better understand the current state and the goals of the project.

Sample Power BI project template 

The primary focus of the project-planning template and the overall project planning stage is on the data sources and the scale and structure of the Power BI dataset required. The project sponsor or business users may only have an idea of several reports, dashboards, or metrics needed but, as a Corporate BI project, it's essential to focus on where the project fits within an overall BI architecture and the long-term return on investment (ROI) of the solution. For example, BI teams would look to leverage any existing Power BI datasets or SSAS tabular models applicable to the project and would be sensitive to version-control issues.

Sample template – Adventure Works BI

The template is comprised of two tables. The first table answers the essential who and when questions so that the project can be added to the BI team's backlog. The BI team can use this information to plan their engagements across multiple ongoing and requested Power BI projects and to respond to project stakeholders, such as Vickie Jacobs, VP of Group Sales, in this example:

Date of Submission

10/15/2017

Project Sponsor

Vickie Jacobs, VP of Group Sales

Primary Stakeholders

Adventure Works Sales Adventure Works Corp

Power BI Author(s)

Mark Langford, Sales Analytics Manager

 

The following table is a list of questions that describe the project's requirements and scope. For example, the number of users that will be read-only consumers of Power BI reports and dashboards, and the number of self-service users that will need Power BI Pro licenses to create Power BI content will largely impact the total cost of the project.

Likewise, the amount of historical data to include in the dataset (2 years, 5 years?) can significantly impact performance scalability:

Topic

#

Question

Business Input

Data sources

1

Can you describe the required data? (For example, sales, inventory, shipping).

Internet Sales, Reseller Sales, and the Sales and Margin Plan. We need to analyze total corporate sales, online, and reseller sales, and compare these results to our plan.

Data sources

2

Is all of the data required for your project available in the data warehouse (SQL Server)?

No

Data Sources

3

What other data sources (if any) contain all or part of the required data (for example, Web, Oracle, Excel)?

The Sales and Margin Plan is maintained in Excel.

Security

4

Should certain users be prevented from viewing some or all of the data?

Yes, sales managers and associates should only see data for their sales territory group. VPs of sales, however, should have global access.

Security

5

Does the data contain any PCII or sensitive data?

No, not that I’m aware of

Scale

6

Approximately, how many years of historical data are needed?

3-4

Data refresh

7

How often does the data need to be refreshed?

Daily

Data refresh

8

Is there a need to view data in real time (as it changes)?

No

Distribution

9

Approximately, how many users will need to view reports and dashboards?

200

Distribution

10

Approximately, how many users will need to create reports and dashboards?

3-4

Version control

11

Are there existing reports on the same data? If so, please describe.

Yes, there are daily and weekly sales snapshot reports available on the portal. Additionally, our team builds reports in Excel that compare actuals to plan.

Version Control

12

Is the Power BI solution expected to replace these existing reports?

Yes, we would like to exclusively use Power BI going forward.

 

A business analyst inside the IT organization can partner with the business on completing the project ingestion template and review the current state to give greater context to the template. Prior to the project kickoff meeting, the business analyst can meet with the BI team members to review the template and any additional findings or considerations. 

Many questions with greater levels of detail will be raised as the project moves forward and therefore the template shouldn't attempt to be comprehensive or overwhelm business teams. The specific questions to include should use business-friendly language and serve to call out the top drivers of project resources and Corporate BI priorities, such as security and version control.

Power BI project roles

Following the review of the project template and input from the business analyst, members of the Power BI team can directly engage the project sponsor and other key stakeholders to officially engage in the project. These stakeholders include subject matter experts on the data source systems, business team members knowledgeable of the current state of reporting and analytics, and administrative or governance personnel with knowledge of organizational policies, available licenses, and current usage. 

New Power BI projects of any significant scale and long-term adoption of Power BI within organizations require Dataset Designers, Report Authors, and a Power BI Admin(s), as illustrated in the following diagram:

Power BI team roles

Each of the three Power BI project roles and perhaps longer-term roles as part of a business intelligence team entail a distinct set of skills and responsibilities. It can be advantageous in a short-term or POC scenario for a single user to serve as both a dataset designer and a report author. However, the Power BI platform and the multi-faceted nature of Corporate BI deployments is too broad and dynamic for a single BI professional to adequately fulfill both roles. It's therefore recommended that team members either self-select or are assigned distinct roles based on their existing skills and experience and that each member develops advanced and current knowledge relevant to their role. A BI manager and/or a project manager can help facilitate effective communication across roles and between the BI team and other stakeholders, such as project sponsors.

Dataset designer

Power BI report visualizations and dashboard tiles are built on top of datasets, and each Power BI report is associated with a single dataset. Power BI datasets can import data from multiple data sources on a refresh schedule or can be configured to issue queries directly to a single data source to resolve report queries. Datasets are therefore a critical component of Power BI projects and their design has tremendous implications regarding user experience, query performance, source system and Power BI resource utilization, and more. 

The dataset designer is responsible for the data access layer of the Power BI dataset, including the authentication to data sources and the M queries used to define the tables of the data model. Additionally, the dataset designer defines the relationships of the model and any required row-level security roles, and develops the DAX measure expressions for use in reports, such as year-to-date (YTD) sales. Given these responsibilities, the dataset designer should regularly communicate with data source owners or SMEs, as well as report authors. For example, the dataset designer needs to be aware of changes to data sources so that data access queries can be revised accordingly and report authors can advise of any additional measures or columns necessary to create new reports. Furthermore, the dataset designer should be aware of the performance and resource utilization of deployed datasets and should work with the Power BI admin on issues such as Power BI Premium capacity.

As per the Power BI team toles diagram, there are usually very few dataset designers in a team while there may be many report authors. This is largely due to the organizational objectives of version control and reusability, which leads to a small number of large datasets. Additionally, robust dataset development requires knowledge of the M and DAX functional programming languages, dimensional modeling practices, and business intelligence. Database experience is also very helpful. If multiple dataset designers are on a team they should look to standardize their development practices so that they can more easily learn and support each other's solutions.

A Power BI dataset designer often has experience in developing SSAS models, particularly SSAS tabular models. For organizations utilizing both SSAS and Power BI Desktop, this could be the same individual. Alternatively, users with experience of building models in Power Pivot for Excel may also prove to be capable Power BI dataset designers.

Report authors

Report authors interface directly with the consumers of reports and dashboards or a representative of this group. In a self-service deployment mode or a hybrid project (business and IT), a small number of report authors may themselves work within the business. Above all else, report authors must have a clear understanding of the business questions to be answered and the measures and attributes (columns) needed to visually analyze and answer these questions. The report author should also be knowledgeable of visualization best practices, such as symmetry and minimalism, in addition to any corporate standards for report formatting and layout.

Power BI Desktop provides a rich set of formatting properties and analytical features, giving report authors granular control over the appearance and behavior of visualizations.

Report authors should be very familiar with all standard capabilities, such as conditional formatting, drilldown, drillthrough, and cross-highlighting, as they often lead demonstrations or training sessions. Additionally, report authors should understand the organization's policies on custom visuals available in the MS Office store and the specific use cases for top or popular custom visuals. 

Power BI admin

A Power BI admin is focused on the overall deployment of Power BI within an organization in terms of security, governance, and resource utilization. Power BI admins are not involved in the day-to-day activities of specific projects but rather configure and manage settings in Power BI that align with the organization's policies. A Power BI admin, for example, monitors the adoption of Power BI content, identifies any high-risk user activities, and manages any Power BI Premium capacities that have been provisioned. Additionally, Power BI admins use Azure Active Directory security groups within the Power BI admin portal to manage access to various Power BI features, such as sharing Power BI content with external organizations. 

Users assigned to the Power BI service administrator role obtain access to the Power BI admin portal and the rights to configure Power BI Tenant settings. For example, in the following image, Anna Sanders is assigned to the Power BI service administrator role within the Office 365 admin center: 

Assigning Power BI service admin role

The Power BI service administrator role allows Anna to access the Power BI admin portal to enable or disable features, such as exporting data and printing reports and dashboard. BI and IT managers that oversee Power BI deployments are often assigned to this role, as it also provides the ability to manage Power BI Premium capacities and access to standard monitoring and usage reporting. Note that only global administrators of Office 365 can assign users to the Power BI service administrator role.

The Power BI admin should have a clear understanding of the organizational policy on the various tenant settings, such as whether content can be shared with external users. For most tenant settings, the Power BI service administrator can define rules in the Power BI admin portal to include or exclude specific security groups. For example, external sharing can be disabled for the entire organization except for a specific security group of users. Most organizations should assign two or more users to the Power BI service administrator role and ensure these users are trained on the administration features specific to this role. Chapter 12, Administering Power BI for an Organization, contains details on the Power BI admin portal and other administrative topics.

Project role collaboration

Communicating and documenting project role assignments during the planning stage promotes the efficient use of time during the development and operations phases. For organizations committed to the Power BI platform as a component of a longer-term data strategy, the project roles may become full-time positions.

For example, BI developers with experience in DAX and/or SSAS tabular databases may be hired as dataset designers while BI developers with experience in data visualization tools and corporate report development may be hired as report authors:

Name

Project role

Brett Powell

Dataset Designer

Jennifer Lawrence

Report Author

Anna Sanders

Power BI Service Admin

Mark Langford

Report Author

Stacy Loeb

QA Tester

Power BI licenses

Users can be assigned either a Power BI Free or a Power BI Pro license. Power BI licenses (Pro and Free) can be purchased individually in the Office 365 admin center, and a Power Pro license is included with an Office 365 Enterprise E5 subscription. A Power BI Pro license is required to publish content to Power BI app workspaces, consume a Power BI app that's not assigned to Power BI Premium capacity, and utilize other advanced features, as shown in the following table:

Feature

Power BI Free

Power BI Pro

Connect to 70+ data sources

Yes

Yes

Publish to web

Yes

Yes

Peer-to-peer sharing

No

Yes

Export to Excel, CSV, PowerPoint

Yes

Yes

Email subscriptions

No

Yes

App workspaces and apps

No

Yes

Analyze in Excel, Analyze in Power BI Desktop

No

Yes

 

With Power BI Premium, users with Power BI Free licenses are able to access and view Power BI apps of reports and dashboards that have been assigned to premium capacities. This access includes consuming the content via the Power BI mobile application. Additionally, Power BI Pro users can share dashboards with Power BI Free users if the dashboard is contained in a Premium workspace. Power BI Pro licenses are required for users that create or distribute Power BI content, such as connecting to published datasets from Power BI Desktop or Excel. 

In this sample project example, only three or four business users may need Power BI Pro licenses to create and share reports and dashboards. Mark Langford, a data analyst for the sales organization, requires a Pro license to analyze published datasets from Microsoft Excel. Jennifer Lawrence, a Corporate BI developer and report author for this project, requires a Pro license to publish Power BI reports to app workspaces and distribute Power BI apps to users.

The following image from the Office 365 admin center identifies the assignment of a Power BI Pro license to a report author: 

Power BI Pro license assignment

As a report author, Jennifer doesn't require any custom role assignment as per the Roles property of the preceding image. If Jennifer becomes responsible for administering Power BI in the future, the Edit option for the Roles property can be used to assign her to the Power BI service administrator role, as described in the Power BI project roles section earlier.

The approximately 200 Adventure Works sales team users who only need to view the content can be assigned Free licenses and consume the published content via Power BI apps associated with Power BI Premium capacity. Organizations can obtain more Power BI Pro licenses and Power BI Premium capacity (virtual cores, RAM) as usage and workloads increase. 

Typically, a Power BI service administrator is also assigned a Power BI Pro license, but a Power BI Pro license is not required to be assigned to the Power BI service administrator role. 

The administration and governance of Power BI deployments at scale involve several topics (such as authentication, activity monitoring, and auditing), and Power BI provides features dedicated to simplifying administration.

These topics and features are reviewed in Chapter 12, Administering Power BI for an Organization.

Given the broad controls associated with the Power BI service administrator role, such as managing Power BI Premium capacities and setting policies for the sharing of external content, some organizations may choose to limit this access to defined time periods. Azure Active Directory Privileged Identity Management (PIM) can be used to provide short-term, audited access to this role. For example, a decision could be made to allow one security group of users to export data from Power BI. A user, such as a BI manager, could be granted Power BI service administrator rights for one day to implement this policy in the Power BI admin portal.

Power BI license scenarios

The optimal mix of Power BI Pro and Power BI Premium licensing in terms of total cost will vary based on the volume of users and the composition of these users between read-only consumers of content versus Self-Service BI users. In relatively small deployments, such as 200 total users, a Power BI Pro license can be assigned to each user regardless of self-service usage and Power BI Premium capacity can be avoided. Be advised, however, that, as per the following Power BI Premium features section, there are other benefits to licensing Power BI Premium capacity that may be necessary for certain deployments, such as larger datasets or more frequent data refreshes.

If an organization consists of 700 total users with 600 read-only users and 100 self-service users (content creators), it's more cost effective to assign Power BI Pro licenses to the 100 self-service users and to provision Power BI Premium capacity to support the other 600 users. Likewise, for a larger organization with 5,000 total users and 4,000 self-service users, the most cost-effective licensing option is to assign Power Pro licenses to the 4,000 self-service users and to license Power BI Premium for the remaining 1,000 users. 

Several factors drive the amount of Power BI Premium capacity to provision, such as the number of concurrent users, the complexity of the queries generated, and the number of concurrent data refreshes. The Power BI Premium calculator provides an initial estimate of the mix of Power BI Pro and Power BI Premium capacity needed for a given workload and can be found at https://powerbi.microsoft.com/en-us/calculator/.

See Chapter 12, Administering Power BI for an Organization, and Chapter 13, Scaling with Power BI Premium and SSAS, for additional details on aligning Power BI licenses and resources with the needs of Power BI deployments.

Power BI Premium features

An organization may choose to license Power BI Premium capacities for additional or separate reasons beyond the ability to distribute Power BI content to read-only users without incurring per-user license costs. Significantly, greater detail on Power BI Premium features and deployment considerations is included in Chapter 13, Scaling with Premium and Analysis Services.

The following table identifies several of the top additional benefits and capabilities of Power BI Premium:

Additional Power BI Premium capabilities
Beyond the six features listed in the preceding table, the roadmap included in the Power BI Premium white paper has advised of future capabilities including read-only replicas, pin to memory, and geographic distribution. See the Power BI Premium white paper (http://bit.ly/2wBGPRJ) and related documentation for the latest updates.

Data warehouse bus matrix

The fundamentals of the dataset should be designed so that it can support future BI and analytics projects and other business teams requiring access to the same data. The dataset will be tasked with delivering both accurate and consistent results across teams and use cases as well as providing a familiar and intuitive interface for analysis. 

To promote reusability and project communication, a data warehouse bus matrix of business processes and shared dimensions is recommended:

Data warehouse bus matrix

Each row reflects an important and recurring business process, such as the monthly close of the general ledger, and each column represents a business entity, which may relate to one or several of the business processes. The shaded rows (Internet Sales, Reseller Sales, and Sales Plan) identify the business processes that will be implemented as their own star schemas for this project. The business matrix can be developed in collaboration with business stakeholders, such as the corporate finance manager, as well as source system and business intelligence or data warehouse SMEs.

The data warehouse bus matrix is a staple of the Ralph Kimball data warehouse architecture, which provides an incremental and integrated approach to data warehouse design. This architecture, as per The Data Warehouse Toolkit (Third Edition) by Ralph Kimball, allows for scalable data models, as multiple business teams or functions often require access to the same business process data and dimensions.

Additional business processes, such as maintaining product inventory levels, could potentially be added to the same Power BI dataset in a future project. Importantly, these future additions could leverage existing dimension tables, such as a Product table, including its source query, column metadata, and any defined hierarchies.

Each Power BI report is tied to a single dataset. Given this 1:1 relationship and the analytical value of integrated reports across multiple business processes, such as Inventory and Internet Sales, it's important to design datasets that can scale to support multiple star schemas. Consolidating business processes into one or a few datasets also makes solutions more manageable and a better use of source system resources, as common tables (for example,Product,Customer) are only refreshed once.

Dataset design process

With the data warehouse bus matrix as a guide, the business intelligence team can work with representatives from the relevant business teams and project sponsors to complete the following four-step dataset design process:

Select the business process.

Declare the grain.

Identify the dimensions.

Define the facts.

Selecting the business process

Ultimately each business process will be represented by a fact table with a star schema of many-to-one relationships to dimensions. In a discovery or requirements gathering process it can be difficult to focus on a single business process in isolation as users regularly analyze multiple business processes simultaneously or need to. Nonetheless, it's essential that the dataset being designed reflects low level business activities (for example, receiving an online sales order) rather than a consolidation or integration of distinct business processes such as a table with both online and reseller sales data:

Confirm that the answer provided to the first question of the project template regarding data sources is accurate:

In this project, the required business processes are

Internet Sales

,

Reseller Sales

,

Annual Sales and Margin Plan

Each of the three business processes corresponds to a fact table to be included in the Power BI dataset

Obtain a high-level understanding of the top business questions each business process will answer:

For example,

"What are total sales relative to the

Annual Sales Plan

and relative to last year?"

In this project,

Internet Sales

and

Reseller Sales

will be combined into overall corporate sales and margin KPIs

Optionally, reference the data warehouse bus matrix of business processes and their related dimensions:

For example, discuss the integration of inventory data and the insights this integration may provide

In many projects, a choice or compromise has to be made given the limited availability of certain business processes and the costs or timelines associated with preparing this data for production use:

Additionally, business processes (fact tables) are the top drivers of the storage and processing costs of the dataset and thus should only be included if necessary.