125,99 €
Extensive coverage of mathematical techniques used in engineering with an emphasis on applications in linear circuits and systems
Mathematical Foundations for Linear Circuits and Systems in Engineering provides an integrated approach to learning the necessary mathematics specifically used to describe and analyze linear circuits and systems. The chapters develop and examine several mathematical models consisting of one or more equations used in engineering to represent various physical systems. The techniques are discussed in-depth so that the reader has a better understanding of how and why these methods work. Specific topics covered include complex variables, linear equations and matrices, various types of signals, solutions of differential equations, convolution, filter designs, and the widely used Laplace and Fourier transforms. The book also presents a discussion of some mechanical systems that mathematically exhibit the same dynamic properties as electrical circuits. Extensive summaries of important functions and their transforms, set theory, series expansions, various identities, and the Lambert W-function are provided in the appendices.
The book has the following features:
Mathematical Foundations for Linear Circuits and Systems in Engineering is written for upper undergraduate and first-year graduate students in the fields of electrical and mechanical engineering. This book is also a reference for electrical, mechanical, and computer engineers as well as applied mathematicians.
John J. Shynk, PhD, is Professor of Electrical and Computer Engineering at the University of California, Santa Barbara. He was a Member of Technical Staff at Bell Laboratories, and received degrees in systems engineering, electrical engineering, and statistics from Boston University and Stanford University.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 346
Veröffentlichungsjahr: 2016
COVER
TITLE PAGE
COPYRIGHT
DEDICATION
PREFACE
NOTATION AND BIBLIOGRAPHY
ABOUT THE COMPANION WEBSITE
CHAPTER 1: OVERVIEW AND BACKGROUND
1.1 INTRODUCTION
1.2 MATHEMATICAL MODELS
1.3 FREQUENCY CONTENT
1.4 FUNCTIONS AND PROPERTIES
1.5 DERIVATIVES AND INTEGRALS
1.6 SINE, COSINE, AND π
1.7 NAPIER'S CONSTANT AND LOGARITHMS
PROBLEMS
PART I: CIRCUITS, MATRICES, AND COMPLEX NUMBERS
CHAPTER 2: CIRCUITS AND MECHANICAL SYSTEMS
2.1 INTRODUCTION
2.2 VOLTAGE, CURRENT, AND POWER
2.3 CIRCUIT ELEMENTS
2.4 BASIC CIRCUIT LAWS
2.5 MECHANICAL SYSTEMS
PROBLEMS
CHAPTER 3: LINEAR EQUATIONS AND MATRICES
3.1 INTRODUCTION
3.2 VECTOR SPACES
3.3 SYSTEM OF LINEAR EQUATIONS
3.4 MATRIX PROPERTIES AND SPECIAL MATRICES
3.5 DETERMINANT
3.6 MATRIX SUBSPACES
3.7 GAUSSIAN ELIMINATION
3.8 EIGENDECOMPOSITION
3.9 MATLAB FUNCTIONS
PROBLEMS
CHAPTER 4: COMPLEX NUMBERS AND FUNCTIONS
4.1 INTRODUCTION
4.2 IMAGINARY NUMBERS
4.3 COMPLEX NUMBERS
4.4 TWO COORDINATES
4.5 POLAR COORDINATES
4.6 EULER'S FORMULA
4.7 MATRIX REPRESENTATION
4.8 COMPLEX EXPONENTIAL ROTATION
4.9 CONSTANT ANGULAR VELOCITY
4.10 QUATERNIONS
PROBLEMS
PART II: SIGNALS, SYSTEMS, AND TRANSFORMS
CHAPTER 5: SIGNALS, GENERALIZED FUNCTIONS, AND FOURIER SERIES
5.1 INTRODUCTION
5.2 ENERGY AND POWER SIGNALS
5.3 STEP AND RAMP FUNCTIONS
5.4 RECTANGLE AND TRIANGLE FUNCTIONS
5.5 EXPONENTIAL FUNCTION
5.6 SINUSOIDAL FUNCTIONS
5.7 DIRAC DELTA FUNCTION
5.8 GENERALIZED FUNCTIONS
5.9 UNIT DOUBLET
5.10 COMPLEX FUNCTIONS AND SINGULARITIES
5.11 CAUCHY PRINCIPAL VALUE
5.12 EVEN AND ODD FUNCTIONS
5.13 CORRELATION FUNCTIONS
5.14 FOURIER SERIES
5.15 PHASOR REPRESENTATION
5.16 PHASORS AND LINEAR CIRCUITS
PROBLEMS
CHAPTER 6: DIFFERENTIAL EQUATION MODELS FOR LINEAR SYSTEMS
6.1 INTRODUCTION
6.2 DIFFERENTIAL EQUATIONS
6.3 GENERAL FORMS OF THE SOLUTION
6.4 FIRST-ORDER LINEAR ODE
6.5 SECOND-ORDER LINEAR ODE
6.6 SECOND-ORDER ODE RESPONSES
6.7 CONVOLUTION
6.8 SYSTEM OF ODE
PROBLEMS
CHAPTER 7: LAPLACE TRANSFORMS AND LINEAR SYSTEMS
7.1 INTRODUCTION
7.2 SOLVING ODE USING PHASORS
7.3 EIGENFUNCTIONS
7.4 LAPLACE TRANSFORM
7.5 LAPLACE TRANSFORMS AND GENERALIZED FUNCTIONS
7.6 LAPLACE TRANSFORM PROPERTIES
7.7 INITIAL AND FINAL VALUE THEOREMS
7.8 POLES AND ZEROS
7.9 LAPLACE TRANSFORM PAIRS
7.10 TRANSFORMS AND POLYNOMIALS
7.11 SOLVING LINEAR ODE
7.12 IMPULSE RESPONSE AND TRANSFER FUNCTION
7.13 PARTIAL FRACTION EXPANSION
7.14 LAPLACE TRANSFORMS AND LINEAR CIRCUITS
PROBLEMS
CHAPTER 8: FOURIER TRANSFORMS AND FREQUENCY RESPONSES
8.1 INTRODUCTION
8.2 FOURIER TRANSFORM
8.3 MAGNITUDE AND PHASE
8.4 FOURIER TRANSFORMS AND GENERALIZED FUNCTIONS
8.5 FOURIER TRANSFORM PROPERTIES
8.6 AMPLITUDE MODULATION
8.7 FREQUENCY RESPONSE
8.8 FREQUENCY RESPONSE OF SECOND-ORDER FILTERS
8.9 FREQUENCY RESPONSE OF SERIES RLC CIRCUIT
8.10 BUTTERWORTH FILTERS
PROBLEMS
CHAPTER: APPENDICES
INTRODUCTION TO APPENDICES
APPENDIX A: EXTENDED SUMMARIES OF FUNCTIONS AND TRANSFORMS
A.1 FUNCTIONS AND NOTATION
A.2 LAPLACE TRANSFORM
A.3 FOURIER TRANSFORM
A.4 MAGNITUDE AND PHASE
A.5 IMPULSIVE FUNCTIONS
A.6 PIECEWISE LINEAR FUNCTIONS
A.7 EXPONENTIAL FUNCTIONS
A.8 SINUSOIDAL FUNCTIONS
APPENDIX B: INVERSE LAPLACE TRANSFORMS
B.1 IMPROPER RATIONAL FUNCTION
B.2 UNBOUNDED SYSTEM
B.3 DOUBLE INTEGRATOR AND FEEDBACK
APPENDIX C: IDENTITIES, DERIVATIVES, AND INTEGRALS
C.1 TRIGONOMETRIC IDENTITIES
C.2 SUMMATIONS
C.3 MISCELLANEOUS
C.4 COMPLETING THE SQUARE
C.5 QUADRATIC AND CUBIC FORMULAS
C.6 DERIVATIVES
C.7 INDEFINITE INTEGRALS
C.8 DEFINITE INTEGRALS
APPENDIX D: SET THEORY
D.1 SETS AND SUBSETS
D.2 SET OPERATIONS
APPENDIX E: SERIES EXPANSIONS
E.1 TAYLOR SERIES
E.2 MACLAURIN SERIES
E.3 LAURENT SERIES
APPENDIX F: LAMBERT W-FUNCTION
F.1 LAMBERT W-FUNCTION
F.2 NONLINEAR DIODE CIRCUIT
F.3 SYSTEM OF NONLINEAR EQUATIONS
GLOSSARY
BIBLIOGRAPHY
INDEX
END USER LICENSE AGREEMENT
xiii
xiv
xv
xvi
xvii
xviii
xix
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
51
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
583
584
585
586
587
588
589
590
591
593
594
595
596
597
598
599
605
607
609
610
611
612
613
615
616
617
618
619
620
621
622
623
Cover
Table of Contents
Preface
Begin Reading
CHAPTER 1: OVERVIEW AND BACKGROUND
Figure 1.1 Systems with a single input and a single output (SISO). (a) General system with input and output . (b) Linear system with sinusoidal input and output.
Figure 1.2 Input/output characteristic for the nonlinear system in Example 1.1.
Figure 1.3 Output for the transfer characteristic in (1.1) in Example 1.1 with input for .
Figure 1.4 Output for the transfer characteristics in (1.2) and (1.4) in Example 1.2 with input for .
Figure 1.5 Multiple-input and multiple-output (MIMO) system.
Figure 1.6 Systems of equations. (a) Nonlinear system in (1.13) and (1.14) in Example 1.4 with . (b) Linear system in (1.5) and (1.6) in Example 1.3.
Figure 1.7 Integrator implementation of a second-order linear ODE.
Figure 1.8 Solutions for the second-order ODE in Example 1.5 with constant coefficients. The input is and the initial conditions are nonzero: .
Figure 1.9 Periodic rectangular waveform. (a) Time-domain representation. (b) Magnitude of frequency spectrum: Fourier series with harmonics and Hz.
Figure 1.10 Aperiodic waveforms. (a) Time-domain representation. (b) Magnitude of frequency spectrum: Fourier transform.
Figure 1.11 Two-dimensional image and spectrum. (a) Spatial representation. (b) Magnitude of frequency spectrum in two dimensions. White denotes a greater magnitude. (The vertical and horizontal white lines are the frequency axes where and . A log scale is used to better visualize variations in the spectrum.)
Figure 1.12 Device models used in Example 1.9. (a) Linear model for resistor . (b) Nonlinear model for diode with resistance .
Figure 1.13 Example of a function with a discontinuity at .
Figure 1.14 (a) Function with two pole singularities at . (b) Function with a removable pole singularity at .
Figure 1.15 Function with an essential singularity at .
Figure 1.16 Finite approximation of the derivative of at .
Figure 1.17 Vehicle position, velocity, and acceleration waveforms used in Example 1.14.
Figure 1.18 Cubic function in Example 1.15 and its derivatives.
Figure 1.19 Three functions in Example 1.17 with singularities at .
Figure 1.20 Lower and upper Riemann sums approximating the integral of on .
Figure 1.21 Unit circle with radius and circumference .
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
