Mathematical Foundations for Linear Circuits and Systems in Engineering - John J. Shynk - E-Book

Mathematical Foundations for Linear Circuits and Systems in Engineering E-Book

John J. Shynk

0,0
125,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Extensive coverage of mathematical techniques used in engineering with an emphasis on applications in linear circuits and systems

Mathematical Foundations for Linear Circuits and Systems in Engineering provides an integrated approach to learning the necessary mathematics specifically used to describe and analyze linear circuits and systems. The chapters develop and examine several mathematical models consisting of one or more equations used in engineering to represent various physical systems. The techniques are discussed in-depth so that the reader has a better understanding of how and why these methods work. Specific topics covered include complex variables, linear equations and matrices, various types of signals, solutions of differential equations, convolution, filter designs, and the widely used Laplace and Fourier transforms. The book also presents a discussion of some mechanical systems that mathematically exhibit the same dynamic properties as electrical circuits. Extensive summaries of important functions and their transforms, set theory, series expansions, various identities, and the Lambert W-function are provided in the appendices.

The book has the following features:

  • Compares linear circuits and mechanical systems that are modeled by similar ordinary differential equations, in order to provide an intuitive understanding of different types of linear time-invariant systems.
  • Introduces the theory of generalized functions, which are defined by their behavior under an integral, and describes several properties including derivatives and their Laplace and Fourier transforms.
  • Contains numerous tables and figures that summarize useful mathematical expressions and example results for specific circuits and systems, which reinforce the material and illustrate subtle points.
  • Provides access to a companion website that includes a solutions manual with MATLAB code for the end-of-chapter problems.

Mathematical Foundations for Linear Circuits and Systems in Engineering is written for upper undergraduate and first-year graduate students in the fields of electrical and mechanical engineering. This book is also a reference for electrical, mechanical, and computer engineers as well as applied mathematicians.


John J. Shynk, PhD, is Professor of Electrical and Computer Engineering at the University of California, Santa Barbara. He was a Member of Technical Staff at Bell Laboratories, and received degrees in systems engineering, electrical engineering, and statistics from Boston University and Stanford University.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 346

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

COVER

TITLE PAGE

COPYRIGHT

DEDICATION

PREFACE

NOTATION AND BIBLIOGRAPHY

ABOUT THE COMPANION WEBSITE

CHAPTER 1: OVERVIEW AND BACKGROUND

1.1 INTRODUCTION

1.2 MATHEMATICAL MODELS

1.3 FREQUENCY CONTENT

1.4 FUNCTIONS AND PROPERTIES

1.5 DERIVATIVES AND INTEGRALS

1.6 SINE, COSINE, AND π

1.7 NAPIER'S CONSTANT AND LOGARITHMS

PROBLEMS

PART I: CIRCUITS, MATRICES, AND COMPLEX NUMBERS

CHAPTER 2: CIRCUITS AND MECHANICAL SYSTEMS

2.1 INTRODUCTION

2.2 VOLTAGE, CURRENT, AND POWER

2.3 CIRCUIT ELEMENTS

2.4 BASIC CIRCUIT LAWS

2.5 MECHANICAL SYSTEMS

PROBLEMS

CHAPTER 3: LINEAR EQUATIONS AND MATRICES

3.1 INTRODUCTION

3.2 VECTOR SPACES

3.3 SYSTEM OF LINEAR EQUATIONS

3.4 MATRIX PROPERTIES AND SPECIAL MATRICES

3.5 DETERMINANT

3.6 MATRIX SUBSPACES

3.7 GAUSSIAN ELIMINATION

3.8 EIGENDECOMPOSITION

3.9 MATLAB FUNCTIONS

PROBLEMS

CHAPTER 4: COMPLEX NUMBERS AND FUNCTIONS

4.1 INTRODUCTION

4.2 IMAGINARY NUMBERS

4.3 COMPLEX NUMBERS

4.4 TWO COORDINATES

4.5 POLAR COORDINATES

4.6 EULER'S FORMULA

4.7 MATRIX REPRESENTATION

4.8 COMPLEX EXPONENTIAL ROTATION

4.9 CONSTANT ANGULAR VELOCITY

4.10 QUATERNIONS

PROBLEMS

PART II: SIGNALS, SYSTEMS, AND TRANSFORMS

CHAPTER 5: SIGNALS, GENERALIZED FUNCTIONS, AND FOURIER SERIES

5.1 INTRODUCTION

5.2 ENERGY AND POWER SIGNALS

5.3 STEP AND RAMP FUNCTIONS

5.4 RECTANGLE AND TRIANGLE FUNCTIONS

5.5 EXPONENTIAL FUNCTION

5.6 SINUSOIDAL FUNCTIONS

5.7 DIRAC DELTA FUNCTION

5.8 GENERALIZED FUNCTIONS

5.9 UNIT DOUBLET

5.10 COMPLEX FUNCTIONS AND SINGULARITIES

5.11 CAUCHY PRINCIPAL VALUE

5.12 EVEN AND ODD FUNCTIONS

5.13 CORRELATION FUNCTIONS

5.14 FOURIER SERIES

5.15 PHASOR REPRESENTATION

5.16 PHASORS AND LINEAR CIRCUITS

PROBLEMS

CHAPTER 6: DIFFERENTIAL EQUATION MODELS FOR LINEAR SYSTEMS

6.1 INTRODUCTION

6.2 DIFFERENTIAL EQUATIONS

6.3 GENERAL FORMS OF THE SOLUTION

6.4 FIRST-ORDER LINEAR ODE

6.5 SECOND-ORDER LINEAR ODE

6.6 SECOND-ORDER ODE RESPONSES

6.7 CONVOLUTION

6.8 SYSTEM OF ODE

PROBLEMS

CHAPTER 7: LAPLACE TRANSFORMS AND LINEAR SYSTEMS

7.1 INTRODUCTION

7.2 SOLVING ODE USING PHASORS

7.3 EIGENFUNCTIONS

7.4 LAPLACE TRANSFORM

7.5 LAPLACE TRANSFORMS AND GENERALIZED FUNCTIONS

7.6 LAPLACE TRANSFORM PROPERTIES

7.7 INITIAL AND FINAL VALUE THEOREMS

7.8 POLES AND ZEROS

7.9 LAPLACE TRANSFORM PAIRS

7.10 TRANSFORMS AND POLYNOMIALS

7.11 SOLVING LINEAR ODE

7.12 IMPULSE RESPONSE AND TRANSFER FUNCTION

7.13 PARTIAL FRACTION EXPANSION

7.14 LAPLACE TRANSFORMS AND LINEAR CIRCUITS

PROBLEMS

CHAPTER 8: FOURIER TRANSFORMS AND FREQUENCY RESPONSES

8.1 INTRODUCTION

8.2 FOURIER TRANSFORM

8.3 MAGNITUDE AND PHASE

8.4 FOURIER TRANSFORMS AND GENERALIZED FUNCTIONS

8.5 FOURIER TRANSFORM PROPERTIES

8.6 AMPLITUDE MODULATION

8.7 FREQUENCY RESPONSE

8.8 FREQUENCY RESPONSE OF SECOND-ORDER FILTERS

8.9 FREQUENCY RESPONSE OF SERIES RLC CIRCUIT

8.10 BUTTERWORTH FILTERS

PROBLEMS

CHAPTER: APPENDICES

INTRODUCTION TO APPENDICES

APPENDIX A: EXTENDED SUMMARIES OF FUNCTIONS AND TRANSFORMS

A.1 FUNCTIONS AND NOTATION

A.2 LAPLACE TRANSFORM

A.3 FOURIER TRANSFORM

A.4 MAGNITUDE AND PHASE

A.5 IMPULSIVE FUNCTIONS

A.6 PIECEWISE LINEAR FUNCTIONS

A.7 EXPONENTIAL FUNCTIONS

A.8 SINUSOIDAL FUNCTIONS

APPENDIX B: INVERSE LAPLACE TRANSFORMS

B.1 IMPROPER RATIONAL FUNCTION

B.2 UNBOUNDED SYSTEM

B.3 DOUBLE INTEGRATOR AND FEEDBACK

APPENDIX C: IDENTITIES, DERIVATIVES, AND INTEGRALS

C.1 TRIGONOMETRIC IDENTITIES

C.2 SUMMATIONS

C.3 MISCELLANEOUS

C.4 COMPLETING THE SQUARE

C.5 QUADRATIC AND CUBIC FORMULAS

C.6 DERIVATIVES

C.7 INDEFINITE INTEGRALS

C.8 DEFINITE INTEGRALS

APPENDIX D: SET THEORY

D.1 SETS AND SUBSETS

D.2 SET OPERATIONS

APPENDIX E: SERIES EXPANSIONS

E.1 TAYLOR SERIES

E.2 MACLAURIN SERIES

E.3 LAURENT SERIES

APPENDIX F: LAMBERT W-FUNCTION

F.1 LAMBERT W-FUNCTION

F.2 NONLINEAR DIODE CIRCUIT

F.3 SYSTEM OF NONLINEAR EQUATIONS

GLOSSARY

BIBLIOGRAPHY

INDEX

END USER LICENSE AGREEMENT

Pages

xiii

xiv

xv

xvi

xvii

xviii

xix

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

583

584

585

586

587

588

589

590

591

593

594

595

596

597

598

599

605

607

609

610

611

612

613

615

616

617

618

619

620

621

622

623

Guide

Cover

Table of Contents

Preface

Begin Reading

List of Illustrations

CHAPTER 1: OVERVIEW AND BACKGROUND

Figure 1.1 Systems with a single input and a single output (SISO). (a) General system with input and output . (b) Linear system with sinusoidal input and output.

Figure 1.2 Input/output characteristic for the nonlinear system in Example 1.1.

Figure 1.3 Output for the transfer characteristic in (1.1) in Example 1.1 with input for .

Figure 1.4 Output for the transfer characteristics in (1.2) and (1.4) in Example 1.2 with input for .

Figure 1.5 Multiple-input and multiple-output (MIMO) system.

Figure 1.6 Systems of equations. (a) Nonlinear system in (1.13) and (1.14) in Example 1.4 with . (b) Linear system in (1.5) and (1.6) in Example 1.3.

Figure 1.7 Integrator implementation of a second-order linear ODE.

Figure 1.8 Solutions for the second-order ODE in Example 1.5 with constant coefficients. The input is and the initial conditions are nonzero: .

Figure 1.9 Periodic rectangular waveform. (a) Time-domain representation. (b) Magnitude of frequency spectrum: Fourier series with harmonics and Hz.

Figure 1.10 Aperiodic waveforms. (a) Time-domain representation. (b) Magnitude of frequency spectrum: Fourier transform.

Figure 1.11 Two-dimensional image and spectrum. (a) Spatial representation. (b) Magnitude of frequency spectrum in two dimensions. White denotes a greater magnitude. (The vertical and horizontal white lines are the frequency axes where and . A log scale is used to better visualize variations in the spectrum.)

Figure 1.12 Device models used in Example 1.9. (a) Linear model for resistor . (b) Nonlinear model for diode with resistance .

Figure 1.13 Example of a function with a discontinuity at .

Figure 1.14 (a) Function with two pole singularities at . (b) Function with a removable pole singularity at .

Figure 1.15 Function with an essential singularity at .

Figure 1.16 Finite approximation of the derivative of at .

Figure 1.17 Vehicle position, velocity, and acceleration waveforms used in Example 1.14.

Figure 1.18 Cubic function in Example 1.15 and its derivatives.

Figure 1.19 Three functions in Example 1.17 with singularities at .

Figure 1.20 Lower and upper Riemann sums approximating the integral of on .

Figure 1.21 Unit circle with radius and circumference .

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!