Mesh Adaptation for Computational Fluid Dynamics, Volume 1 - Alain Dervieux - E-Book

Mesh Adaptation for Computational Fluid Dynamics, Volume 1 E-Book

Alain Dervieux

0,0
126,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Simulation technology, and computational fluid dynamics (CFD) in particular, is essential in the search for solutions to the modern challenges faced by humanity. Revolutions in CFD over the last decade include the use of unstructured meshes, permitting the modeling of any 3D geometry. New frontiers point to mesh adaptation, allowing not only seamless meshing (for the engineer) but also simulation certification for safer products and risk prediction.

Mesh Adaptation for Computational Dynamics 1 is the first of two volumes and introduces basic methods such as feature-based and multiscale adaptation for steady models. Also covered is the continuous Riemannian metrics formulation which models the optimally adapted mesh problem into a pure partial differential statement. A number of mesh adaptative methods are defined based on a particular feature of the simulation solution.

This book will be useful to anybody interested in mesh adaptation pertaining to CFD, especially researchers, teachers and students.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 339

Veröffentlichungsjahr: 2022

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Acknowledgments

Introduction

1 CFD Numerical Models

1.1. Compressible flow

1.2. Viscous compressible flows

1.3. A multi-fluid incompressible model

1.4. Appendix: circumcenter cells

1.5. Notes

2 Mesh Convergence and Barriers

2.1. Introduction

2.2. The early capturing property

2.3. Unstructured meshes in finite element method

2.4. Accuracy of an interpolation

2.5. Isotropic adaptative interpolation

2.6. Anisotropic adaptative interpolation

2.7. Numerical illustration: anisotropic versus isotropic interpolation

2.8. CFD applications of anisotropic capture

2.9. Unsteady case

2.10. Conclusion

2.11. Notes

3 Mesh Representation

3.1. Introduction

3.2. An introductory example

3.3. Euclidean metric space

3.4. Riemannian metric space

3.5. Generation of adapted anisotropic meshes

3.6. Operations on metrics

3.7. Computation of geometric quantities

3.8. Notes

4 Geometric Error Estimate

4.1. The 1D case

4.2. Discrete-continuous duality for linear interpolation error

4.3. Numerical validation of the continuous interpolation error

4.4. Optimal control of the interpolation error in L

p

norm

4.5. Multidimensional discontinuity capturing

4.6. Linear interpolate operator

4.7. A local L

upper bound of the interpolation error

4.8. Metric construction for mesh adaptation

4.9. Mesh adaptation for analytical functions

4.10. Conclusion

4.11. Notes

5 Multiscale Adaptation for Steady Simulations

5.1. Introduction

5.2. Definitions and notations (2D)

5.3. Solving the problematic of the unknown solution (2D/3D)

5.4. Numerical computation/recovery of the Hessian matrix

5.5. Solution interpolation

5.6. Mesh adaptation algorithm

5.7. Example of a CFD numerical simulation

5.8. Conclusion

5.9. Notes

6 Multiscale Convergence and Certification in CFD

6.1. Introduction

6.2. A mesh convergence algorithm

6.3. An academic test case

6.4. 3D multiscale anisotropic mesh adaptation

6.5. Conclusion

6.6. Notes

References

Index

Summary of Volume 2

Wiley End User License Agreement

Guide

Cover

Table of Contents

Title Page

Copyright

Acknowledgments

Introduction

1 CFD Numerical Models

References

Index

Summary of Volume 2

Wiley End User License Agreement

Pages

v

iii

iv

ix

x

xi

xii

xiii

xiv

xv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

211

212

213

214

215

216

217

218

219

220

221

222

223

225

226

227

228

229

230

231

232

233

234

235

236

Mesh Adaptation for Computational Fluid Dynamics 1

Continuous Riemannian Metrics and Feature-based Adaptation

Alain Dervieux

Frédéric Alauzet

Adrien Loseille

Bruno Koobus

First published 2022 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.co

© ISTE Ltd 2022

The rights of Alain Dervieux, Frédéric Alauzet, Adrien Loseille and Bruno Koobus to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s), contributor(s) or editor(s) and do not necessarily reflect the views of ISTE Group.

Library of Congress Control Number: 2022934897

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-831-3

Acknowledgments

This book presents many theoretical and numerical accomplishments performed in collaboration with the following researchers:

Rémi Abgrall, Olivier Allain, Francoise Angrand, Paul Arminjon, Nicolas Barral, Anca Belme, Fayssal Benkhaldoun, Francois Beux, Gautier Brèthes, Véronique Billey, Alexandre Carabias, Romuald Carpentier, Giles Carré, Yves Coudière, Francois Courty, Didier Chargy, Paul-Henri Cournède, Christophe Debiez, Jean-Antoine Desideri, Gérard Fernandez, Loula Fezoui, Jérôme Francescatto, Loic Frazza, Pascal Frey, Paul-Louis George, Aurélien Goudjo, Nicolas Gourvitch, Damien Guégan, Hervé Guillard, Emmanuelle Itam, Marie-Hélène Lallemand, Stéphane Lanteri, Bernard Larrouturou, Anne-Cécile Lesage, David Leservoisier, Francoise Loriot, Mark Loriot, Laurent Loth, Nathalie Marco, Katherine Mer, Victorien Menier, Bijan Mohammadi, Eric Morano, Boniface Nkonga, Géraldine Olivier, Bernadette Palmerio, Gilbert Rogé, Bastien Sauvage, Éric Schall, Hervé Stève, Bruno Stoufflet, Francois Thomasset, Julien Vanharen, Ganesan Vijayasundaram, Cécile Viozat and Stephen Wornom; we also want to apologize to the people we forgot to mention.

Also we want to acknowledge our friends of INRIA and Lemma, and in particular Charles Leca, Olivier Allain, Nathalie and Philippe Boh, for their support. INRIA provided excellent conditions for research and writing of this book to the first three authors. Lemma permitted a rapid industrialization of our mesh adaptation methods.

The first author thanks his advisers, Jean Céa, Roland Glowinski and many thanks also to Charbel Farhat, Jacques Périaux and Roger Peyret.

This study is supported by fp6 and fp7 European progams (AEROSHAPE, HISAC, NODESIM, UMRIDA). The authors and their coworkers were granted access to the HPC resources of CINES/IDRIS under allocations made by GENCI (Grand Equipement National de Calcul Intensif).