94,99 €
Focusing on polarization matrix optics in many forms, this book includes coverage of a wide range of methods which have been applied to LCD modeling, ranging from the simple Jones matrix method to elaborate and high accuracy algorithms suitable for off-axis optics. Researchers and scientists are constantly striving for improved performance, faster response times, wide viewing angles, improved colour in liquid crystal display development, and with this comes the need to model LCD devices effectively. The authors have significant experience in dealing with the problems related to the practical application of liquid crystals, in particular their optical performance.
Key features:
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 968
Veröffentlichungsjahr: 2015
Series Editors: Anthony C. Lowe and Ian Sage
Display Systems: Design and Applications Lindsay W. MacDonald and Anthony C. Lowe (Eds.)
Electronic Display Measurement: Concepts, Techniques, and Instrumentation Peter A. Keller
Reflective Liquid Crystal Displays Shin-Tson Wu and Deng-Ke Yang
Colour Engineering: Achieving Device Independent Colour Phil Green and Lindsay MacDonald (Eds.)
Display Interfaces: Fundamentals and Standards Robert L. Myers
Digital Image Display: Algorithms and Implementation Gheorghe Berbecel
Flexible Flat Panel Displays Gregory Crawford (Ed.)
Polarization Engineering for LCD Projection Michael G. Robinson, Jianmin Chen, and Gary D. Sharp
Introduction to Microdisplays David Armitage, Ian Underwood, and Shin-Tson Wu
Mobile Displays: Technology and Applications Achintya K. Bhowmik, Zili Li, and Philip Bos (Eds.)
Photoalignment of Liquid Crystalline Materials: Physics and Applications Vladimir G. Chigrinov, Vladimir M. Kozenkov, and Hoi-Sing Kwok
Projection Displays, Second Edition Matthew S. Brennesholtz and Edward H. Stupp
Introduction to Flat Panel Displays Jiun-Haw Lee, David N. Liu, and Shin-Tson Wu
LCD Backlights Shunsuke Kobayashi, Shigeo Mikoshiba, and Sungkyoo Lim (Eds.)
Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects, Second Edition Ernst Lueder
Transflective Liquid Crystal Displays Zhibing Ge and Shin-Tson Wu
Liquid Crystal Displays: Fundamental Physics and Technology Robert H. Chen
3D Displays Ernst Lueder
OLED Display Fundamentals and Applications Takatoshi Tsujimura
Illumination, Color and Imaging: Evaluation and Optimization of Visual Displays Peter Bodrogi and Tran Quoc Khanh
Interactive Displays: Natural Human-Interface Technologies Achintya K. Bhowmik (Ed.)
Addressing Techniques of Liquid Crystal Displays Temkar N. Ruckmongathan
Fundamentals of Liquid Crystal Devices, Second Edition Deng-Ke Yang and Shin-Tson Wu
Modeling and Optimization of LCD Optical Performance Dmitry A. Yakovlev, Vladimir G. Chigrinov, and Hoi-Sing Kwok
Dmitry A. YakovlevSaratov State University, Russia
Vladimir G. ChigrinovHong Kong University of Science & Technology, Hong Kong
Hoi-Sing KwokHong Kong University of Science & Technology, Hong Kong
This edition first published 2015 © 2015 John Wiley & Sons, Ltd
Registered officeJohn Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.
The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
Library of Congress Cataloging-in-Publication Data
Yakovlev, Dmitry A. Modeling and optimization of LCD optical performance / Dmitry A. Yakovlev, Vladimir G. Chigrinov, Hoi-Sing Kwok. pages cm Includes bibliographical references and index. ISBN 978-0-470-68914-1 (hardback) 1. Liquid crystal displays. I. Chigrinov, V. G. (Vladimir G.) II. Kwok, Hoi-Sing. III. Title. TK7872.L56Y35 2014 621.3815′422–dc23
2014001761
A catalogue record for this book is available from the British Library.
ISBN: 9780470689141
To our beloved wives: Larisa, Larisa, and Ying-Hung
Series Editor's Foreword
Preface
Acknowledgments
List of Abbreviations
About the Companion Website
1 Polarization of Monochromatic Waves. Background of the Jones Matrix Methods. The Jones Calculus
1.1 Homogeneous Waves in Isotropic Media
1.2 Interface Optics for Isotropic Media
1.3 Wave Propagation in Anisotropic Media
1.4 Jones Calculus
Notes
References
2 The Jones Calculus: Solutions for Ideal Twisted Structures and Their Applications in LCD Optics
2.1 Jones Matrix and Eigenmodes of a Liquid Crystal Layer with an Ideal Twisted Structure
2.2 LCD Optics and the Gooch–Tarry Formulas
2.3 Interactive Simulation
2.4 Parameter Space
References
3 Optical Equivalence Theorem
3.1 General Optical Equivalence Theorem
3.2 Optical Equivalence for the Twisted Nematic Liquid Crystal Cell
3.3 Polarization Conserving Modes
3.4 Application to Nematic Bistable LCDs
3.5 Application to Reflective Displays
3.6 Measurement of Characteristic Parameters of an LC Cell
References
4 Electro-optical Modes: Practical Examples of LCD Modeling and Optimization
4.1 Optimization of LCD Performance in Various Electro-optical Modes
4.2 Transflective LCDs
4.3 Total Internal Reflection Mode
4.4 Ferroelectric LCDs
4.5 Birefringent Color Generation in Dichromatic Reflective FLCDs
Notes
References
5 Necessary Mathematics. Radiometric Terms. Conventions. Various Stokes and Jones Vectors
5.1 Some Definitions and Relations from Matrix Algebra
5.2 Some Radiometric Quantities. Conventions
5.3 Stokes Vectors of Plane Waves and Collimated Beams Propagating in Isotropic Nonabsorbing Media
5.4 Jones Vectors
References
6 Simple Models and Representations for Solving Optimization and Inverse Optical Problems. Real Optics of LC Cells and Useful Approximations
6.1 Polarization Transfer Factor of an Optical System
6.2 Optics of LC Cells in Terms of Polarization Transport Coefficients
6.3 Retroreflection Geometry
6.4 Applications of Polarization Transport Coefficients in Optimization of LC Devices
6.5 Evaluation of Ultimate Characteristics of an LCD that can be Attained by Fitting the Compensation System. Modulation Efficiency of LC Layers
Notes
References
7 Some Physical Models and Mathematical Algorithms Used in Modeling the Optical Performance of LCDs
7.1 Physical Models of the Light–Layered System Interaction Used in Modeling the Optical Behavior of LC Devices. Plane-Wave Approximations. Transfer Channel Approach
7.2 Transfer Matrix Technique and Adding Technique
7.3 Optical Models of Some Elements of LCDs
Notes
References
8 Modeling Methods Based on the Rigorous Theory of the Interaction of a Plane Monochromatic Wave with an Ideal Stratified Medium. Eigenwave (EW) Methods. EW Jones Matrix Method
8.1 General Properties of the Electromagnetic Field Induced by a Plane Monochromatic Wave in a Linear Stratified Medium
8.2 Transmission and Reflection Operators of Fragments (TR Units) of a Stratified Medium and Their Calculation
8.3 Berreman's Method
8.4 Simplifications, Useful Relations, and Advanced Techniques
8.5 Transmissivities and Reflectivities
8.6 Mathematical Properties of Transfer Matrices and Transmission and Reflection EW Jones Matrices of Lossless Media and Reciprocal Media
8.7 Calculation of EW 4 × 4 Transfer Matrices for LC Layers
8.8 Transformation of the Elements of EW Jones Vectors and EW Jones Matrices Under Changes of Eigenwave Bases
Notes
References
9 Choice of Eigenwave Bases for Isotropic, Uniaxial, and Biaxial Media
9.1 General Aspects of EWB Specification. EWB-generating routines
9.2 Isotropic Media
9.3 Uniaxial Media
9.4 Biaxial Media
References
10 Efficient Methods for Calculating Optical Characteristics of Layered Systems for Quasimonochromatic Incident Light. Main Routines of LMOPTICS Library
10.1 EW Stokes Vectors and EW Mueller Matrices
10.2 Calculation of the EW Mueller Matrices of the Overall Transmission and Reflection of a System Consisting of “Thin” and “Thick” Layers
10.3 Main Routines of LMOPTICS
Notes
References
11 Calculation of Transmission Characteristics of Inhomogeneous Liquid Crystal Layers with Negligible Bulk Reflection
11.1 Application of Jones Matrix Methods to Inhomogeneous LC Layers
11.2 NBRA. Basic Differential Equations
11.3 NBRA. Numerical Methods
11.4 NBRA. Analytical Solutions
11.5 Effect of Errors in Values of the Transmission Matrix of the LC Layer on the Accuracy of Modeling the Transmittance of the LCD Panel
References
12 Some Approximate Representations in EW Jones Matrix Method and Their Application in Solving Optimization and Inverse Problems for LCDs
12.1 Theory of STUM Approximation
12.2 Exact and Approximate Expressions for Transmission Operators of Interfaces at Normal Incidence
12.3 Polarization Jones Matrix of an Inhomogeneous Nonabsorbing Anisotropic Layer with Negligible Bulk Reflection at Normal Incidence. Simple Representations of Polarization Matrices of LC Layers at Normal Incidence
12.4 Immersion Model of the Polarization-Converting System of an LCD
12.5 Determining Configurational and Optical Parameters of LC Layers With a Twisted Structure: Spectral Fitting Method
12.6 Optimization of Compensation Systems for Enhancement of Viewing Angle Performance of LCDs
Note
References
13 A Few Words About Modeling of Fine-Structure LCDs and the Direct Ray Approximation
13.1 Virtual Microscope
13.2 Directional Illumination and Diffuse Illumination
References
Appendix A LCD Modeling Software MOUSE-LCD Used for the HKUST Students Final Year Projects (FYP) from 2003 to 2011
A.1 Introductory Remarks
A.2 Fast LCD
A.3 Color LCD [2]
A.4 Transflective LCD
A.5 Switchable Viewing Angle LCD
A.6 Optimal e-paper Configurations
A.7 Color Filter Optimization
References
Appendix B Some Derivations and Examples
B.1 Conservation Law for Energy Flux
B.2 Lorentz's Lemma
B.3 Nonexponential Waves
B.4 To the Power Series Method (Section 11.3.3)
B.5 One of the Ways to Obtain the Explicit Expressions for Transmission Jones Matrices of an Ideal Twisted LC Layer
Reference
Index
End User License Agreement
Chapter 1
Table 1.1
Chapter 3
Table 3.1
Table 3.2
Table 3.3
Chapter 4
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Chapter 6
Table 6.1
Chapter 8
Table 8.1
Chapter 9
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Chapter 10
Table 10.1
Chapter 12
Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5
Table 12.6
Table 12.7
Table 12.8
Table 12.9
Table 12.10
Table 12.11
Table 12.12
Table 12.13
Table 12.14
Appendix A
Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6
Table A.7
Table A.8
Table A.9
Table A.10
Table A.11
Table A.12
Chapter 1
Figure 1.1
A polarization ellipse
Figure 1.2
Representation of polarization states by points on the Poincaré sphere
Figure 1.3
Reference frames (
x
,
y
,
z
) and (
x
′,
y
′,
z
)
Figure 1.4
Polarization ellipses of mutually orthogonal polarizations
Figure 1.5
Transmission and reflection at a plane interface between isotropic media. Geometry of the problem
Figure 1.6
Transmissivities
T
pp
and
T
ss
and reflectivities
R
pp
and
R
ss
versus the angle of incidence
β
inc
at
n
1
n
2
Figure 1.7
A prism reflector using the TIR phenomenon
Figure 1.8
Homogeneous natural waves in a nonabsorbing uniaxial medium.
l
is the wave normal
Figure 1.9
Geometry of the problem. The dotted arrows in sketch (b) show the directions of wave normals of the incident and induced waves
Figure 1.10
Double refraction at oblique incidence
Figure 1.11
A transmissive system of birefringent layers.
J
{
} stands for the Jones vector of a wave
. Parts (a) and (b) show the two cases compared in Jones's reversibility theorem
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
