Modern Devices - Charles L. Joseph - E-Book

Modern Devices E-Book

Charles L. Joseph

0,0
118,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Focuses on the common recurring physical principles behind sophisticated modern devices

This book discusses the principles of physics through applications of state-of-the-art technologies and advanced instruments. The authors use diagrams, sketches, and graphs coupled with equations and mathematical analysis to enhance the reader’s understanding of modern devices. Readers will learn to identify common underlying physical principles that govern several types of devices, while gaining an understanding of the performance trade-off imposed by the physical limitations of various processing methods. The topics discussed in the book assume readers have taken an introductory physics course, college algebra, and have a basic understanding of calculus.  

  • Describes the basic physics behind a large number of devices encountered in everyday life, from the air conditioner to Blu-ray discs
  • Covers state-of-the-art devices such as spectrographs, photoelectric image sensors, spacecraft systems, astronomical and planetary observatories, biomedical imaging instruments, particle accelerators, and jet engines
  • Includes access to a book companion site that houses Power Point slides
Modern Devices: The Simple Physics of Sophisticated Technology is designed as a reference for professionals that would like to gain a basic understanding of the operation of complex technologies. The book is also suitable as a textbook for upper-level undergraduate non-major students interested in physics.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 932

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

COVER

TITLE PAGE

PREFACE

ABOUT THE COMPANION WEBSITE

1 PRINCIPLES OF PHYSICS AND THE RELEVANCE TO MODERN TECHNOLOGIES

1.1 CM, EM, AND QM: THE BACKBONE OF PHYSICS

1.2 PHOTONICS AND ELECTRONICS

2 EVERYDAY HOME APPLIANCES

2.1 THE AIR CONDITIONER

2.2 MICROWAVE OVENS

2.3 SMOKE DETECTORS

2.4 COMPACT DISCS, DIGITAL VERSATILE DISCS, AND BLU-RAY DISCS

2.5 PHOTOCOPIERS AND FAX MACHINES

3 DEVICES ENCOUNTERED IN MODERN LIFE

3.1 METAL DETECTORS FOR AIRPORTS AND TRAFFIC LIGHTS

3.2 BARCODE SCANNERS, QUICK RESPONSE CODES, AND RADIO-FREQUENCY IDENTIFICATION READERS

3.3 GLOBAL POSITIONING

3.4 TRANSPORTATION TECHNOLOGIES

4 VACUUM SYSTEMS: ENABLING HIGH-TECH INDUSTRIES

4.1 VACUUM CHAMBER TECHNOLOGY

4.2 PHYSICS OF SOME VACUUM GAUGES

4.3 LOW VACUUM VIA VENTURI, MECHANICAL, OR SORPTION PUMPS

4.4 HV VIA DIFFUSION, TURBOMOLECULAR, OR CRYOGENIC PUMPS

4.5 UHV VIA ION PUMPS

5 CLEANROOMS, AN ENABLING TECHNOLOGY

6 SOLID-STATE ELECTRONICS

6.1 CONDUCTING, SEMICONDUCTING, AND INSULATING MATERIALS

6.2 RESISTORS, CAPACITORS, AND INDUCTORS

6.3 DIODES AND TRANSISTORS

6.4 FET, JFET, MOSFET, CMOS, AND TTL

6.5 SUMMARY

7 HIGH-TECH SEMICONDUCTOR FABRICATION

7.1 THIN FILMS

7.2 THIN-FILM DEPOSITION METHODS

7.3 HIGH-PURITY CRYSTALS VIA MBE

7.4 PHOTOLITHOGRAPHY AND ETCH TECHNIQUES

7.5 IN SITU AND INTERMEDIATE-STAGE TESTS

7.6 DEVICE STRUCTURES AND IC PACKAGING

8 MATERIALS SCIENCE—INVALUABLE HIGH-TECH CONTRIBUTIONS

8.1 THE USE OF COMPOSITE MATERIALS

8.2 THIN-FILM MULTILAYERS

8.3 NANOTECHNOLOGY

9 LIGHT SOURCES

9.1 INCANDESCENT LAMPS

9.2 GAS DISCHARGE LAMPS

9.3 FLUORESCENT LAMPS

9.4 LIGHT EMITTING DIODES

9.5 X-RAY SOURCES

9.6 LASERS

9.7 SYNCHROTRON LIGHT SOURCES

9.8 SUMMARY OF LIGHT SOURCES

10 SOME BASIC PHYSICS OF OPTICAL SYSTEMS

10.1 REFRACTIVE AND REFLECTIVE OPTICS AND THEIR USES

10.2 POLARIZATION AND BIREFRINGENCE

10.3 DIFFRACTION

10.4 HOLOGRAPHY

10.5 PRIMARY ABERRATIONS

11 OPTICAL COUPLERS INCLUDING OPTICAL FIBERS

11.1 OPTICAL FIBERS AND HOLLOW WAVEGUIDES

11.2 COUPLERS FOR LONG DISTANCES

11.3 OPTICAL COUPLERS AS A MEANS OF ELECTRONIC ISOLATION

12 SPECTROGRAPHS: READING THE “BAR CODE” OF NATURE

12.1 PRISMS, RULED GRATINGS, AND HOLOGRAPHIC GRATINGS

12.2 LONG-SLIT SPECTROGRAPHS

12.3 INTEGRAL FIELD UNIT AND FABRY–PÉROT

12.4 ECHELLE SPECTROGRAPHS

12.5 RAMAN SPECTROGRAPHS

13 OPTICAL AND ELECTRON MICROSCOPY

13.1 OPTICAL MICROSCOPES

13.2 THE TRANSMISSION ELECTRON MICROSCOPE

13.3 ELECTRON–MATTER INTERACTIONS

13.4 BRAGG’S DIFFRACTION

13.5 SCANNING PROBE MICROSCOPES

14 PHOTOELECTRIC IMAGE SENSORS

14.1 SOLID-STATE VISIBLE WAVELENGTH SENSORS

14.2 PHOTOEMISSIVE DEVICES FOR UV AND X-RAYS

14.3 INFRARED “THERMAL” SENSORS AND NIGHT VISION SENSORS

15 IMAGE DISPLAY SYSTEMS

15.1 THE HUMAN VISUAL SYSTEM

15.2 WHO INVENTED TELEVISION?

15.3 TRADITIONAL AND HIGH-DEFINITION TV DISPLAY FORMATS

15.4 CATHODE RAY TUBES

15.5 LIQUID CRYSTAL DISPLAYS

15.6 PLASMA DISPLAYS

15.7 DIGITAL MICRO-MIRROR DEVICES

15.8 TOUCH SCREENS

15.9 ELECTROPHORETIC DISPLAYS

15.10 NEAR-EYE DISPLAYS, AUGMENTED REALITY, AND VIRTUAL REALITY

15.11 STEREOSCOPIC, AUTOSTEREOSCOPIC, AND HOLOGRAPHIC 3D DISPLAYS

16 SPACECRAFT SYSTEMS

16.1 OPERATING IN SPACE: AN OVERVIEW

16.2 ATTITUDE CONTROL SYSTEM

16.3 SPACECRAFT POWER

16.4 THERMAL AND OTHER ENVIRONMENTAL CONTROL

16.5 COMMAND, CONTROL, AND TELEMETRY

16.6 LAUNCH, PROPULSION, STATION KEEPING, AND DEORBIT

17 ASTRONOMICAL AND PLANETARY OBSERVATORIES

17.1 TELESCOPE DESIGNS

17.2 VERY LARGE, ULTRA-LIGHTWEIGHT OR SEGMENTED MIRRORS

17.3 ADAPTIVE OPTICS AND ACTIVE OPTICS

17.4 SPACE OBSERVATORIES

17.5 PLANETARY PROBES

18 TELECOMMUNICATIONS

18.1 PHYSICAL CONNECTIONS: PHONE LINES, COAXIAL CABLE, AND FIBER OPTICS

18.2 ANALOG FREE-SPACE CHANNELS: TV, RADIO, MICROWAVE CONNECTIONS

18.3 DIGITALLY MODULATED FREE-SPACE CHANNELS

18.4 THE NETWORK, MULTIPLEXING, AND DATA COMPRESSION

19 PHYSICS OF INSTRUMENTS FOR BIOLOGY AND MEDICINE

19.1 IMAGING INSTRUMENTS

19.2 MINIMALLY INVASIVE PROBES AND SURGERY

19.3 LASER TECHNOLOGIES

19.4 MISCELLANEOUS ELECTRONIC DEVICES

20 A-BOMBS, H-BOMBS, AND RADIOACTIVITY

20.1 ALPHA, BETA, AND GAMMA RAY RADIATION

20.2 A-BOMBS, H-BOMBS, AND DIRTY BOMBS

20.3 RADIATION SAFETY, DETECTION, AND PROTECTION

20.4 INDUSTRIAL AND MEDICAL APPLICATIONS

21 POWER GENERATION

21.1 PRINCIPLES OF ELECTRIC GENERATORS

21.2 POWER STORAGE AND POWER CONTENT OF FUELS

21.3 THE POWER GRID

22 PARTICLE ACCELERATORS—ATOM AND PARTICLE SMASHERS

22.1 LORENTZ FORCE, DEFLECTION, AND FOCUSING

22.2 BEAM GENERATION, MANIPULATION, AND CHARACTERIZATION

22.3 DC ACCELERATORS

22.4 RF LINEAR ACCELERATORS

22.5 CYCLOTRONS

22.6 SYNCHROTRON RADIATION AND LIGHT SOURCES

23 JET ENGINES, STRATOSPHERIC BALLOONS, AND AIRSHIPS

23.1 RAMJETS, TURBOJETS, AND TURBOFAN JETS

23.2 STRATOSPHERIC BALLOONS

23.3 FUTURE AIRSHIPS

APPENDIX A: STATISTICS AND ERROR ANALYSIS

BIBLIOGRAPHY

INDEX

END USER LICENSE AGREEMENT

List of Tables

Chapter 05

Table 5.1 ISO 14644-1 Cleanroom Standards

Chapter 07

Table 7.1 Types of Vapor Deposition

Chapter 09

Table 9.1 Laser Classifications

Table 9.2 Blackbody Temperatures and Colors

Chapter 11

Table 11.1 Attenuation Values from the Cisco Webpages

Chapter 13

Table 13.1 Main Parameters of a Typical Optical Microscope

Table 13.2 Main Parameters of Phillips CM200 FEG Transmission Electron Microscope

Chapter 15

Table 15.1 Analog and Digital TV Standards

Table 15.2 Resolution and Aspect Ratio of Some Common Computer Monitor Formats

Chapter 18

Table 18.1 A Few Radio Bands and Telecommunication Uses

Chapter 21

Table 21.1 Life Cycle Greenhouse Gas Emissions

Chapter 23

Table 23.1 Approximate Benchmark Numbers for the Atmosphere

List of Illustrations

Chapter 01

Figure 1.1 In the ever-expanding body of human knowledge, it is difficult for an individual to keep pace by only absorbing factual information. Gray areas represent small fragments of an individual’s knowledge compared to all of the available data. Some of these fragments are connected (shown as lines) via various means (e.g., factual, cognitive, and reasoning).

Figure 1.2 A few of the many uses of modern day pulleys.

Figure 1.3 Benchmark sizes of fingerprint ridges, a cotton thread, and a typical hair from a human head, showing the relative scale of objects that can be seen by the eye.

Figure 1.4 (a) It is often useful to conceive of an atom as a planetary model with a central nucleus, surrounded by orbiting electrons. The size of a free electron (as determined from its de Boglie wavelength) is approximately the size of the atom itself. The size of the nucleus is so small that it cannot be drawn to scale. (b) Pictured is a single photon (

λ

 = 500 nm) scaled equivalently to half of an 8.5″ × 11″ sheet of paper. Also drawn to scale is the size of an atom, which is 1/5000 times smaller (the dot).

Chapter 02

Figure 2.1 A schematic representation of a room air conditioner. Temperature and pressure change significantly at two locations in a manner similar to Equation 2.1.

Note

: the four locations. These denote the thermodynamic positions of the refrigerant on the graphs that follow.

Figure 2.2 An air conditioner must add work to extract heat from the cold environment and move it to the warmer one.

Figure 2.3 The thermodynamic path of taken by a refrigerator or air conditioner. Compression of vapor occurs along the path from point 1 to 2. Superheated vapor is removed in the condenser along 2–2a. Vapor to liquid in the condenser is along path 2a–3. From 3 to 4, the liquid flashes into vapor + liquid in expansion valve. The two-phase fluid converts completely to vapor in evaporator along path 4 to 1.

Figure 2.4 Top left: the four stages of an A/C corresponding to those in Figure 2.1. Top right: the thermodynamic curve given in Figure 2.2 for reference. Bottom left: an excerpt from pressure–temperature table used by A/C technicians and engineers. Bottom right: an example graphic used by A/C engineers.

Figure FB2.1 Phase transition diagram for H

2

O, specifically temperature versus energy for a single isobar. In a closed system such as an air conditioner where the pressure is also a variable, there is a family of curves representing various isobars.

Figure 2.5 The basic components of a microwave oven.

Figure 2.6 The water molecule, consisting of one oxygen atom (red) and two hydrogen atoms (green). The molecule is a dipole with an internal electric field pointing up in this example. One molecule tends to attract weakly another with the same orientation (right).

Figure 2.7 The schematic representation of the response of water molecules to an electric field. The HO molecules start flipping and spinning if the

field continually changes its orientation. The resulting higher internal motions correspond to an increased temperature.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!