119,88 €
Molecular Neuroendocrinology: From Genome to Physiology, provides researchers and students with a critical examination of the steps being taken to decipher genome complexity in the context of the expression, regulation and physiological functions of genes in neuroendocrine systems.
The 19 chapters are divided into four sectors: A) describes and explores the genome, its evolution, expression and the mechanisms that contribute to protein, and hence biological, diversity. B) discusses the mechanisms that enhance peptide and protein diversity beyond what is encoded in the genome through post-translational modification. C) considers the molecular tools that today’s neuroendocrinologists can use to study the regulation and function of neuroendocrine genes within the context of the intact organism. D) presents a range of case studies that exemplify the state-of-the-art application of genomic technologies in physiological and behavioural experiments that seek to better understand complex biological processes.
• Written by a team of internationally renowned researchers
• Both print and enhanced e-book versions are available
• Illustrated in full colour throughout
This is the third volume in a new Series ‘Masterclass in Neuroendocrinology’ , a co- publication between Wiley and the INF (International Neuroendocrine Federation) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology.
Series Editors: John A. Russell, University of Edinburgh, UK and William E. Armstrong, The University of Tennessee, USA
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1196
Veröffentlichungsjahr: 2016
Cover
Title Page
List of Contributors
Series Preface
About the Companion Website
Introduction
Part A: Genome and Genome Expression
CHAPTER 1: Evolutionary Aspects of Physiological Function and Molecular Diversity of the Oxytocin/Vasopressin Signaling System
1.1 Evolution of peptidergic signaling
1.2 The discovery of neuropeptide signaling components in the era of genomics
1.3 Evolutionary aspects of OXT/AVP diversity
1.4 Physiology of OXT and AVP signaling: from worm to man
1.5 Perspectives
Acknowledgments
References
CHAPTER 2: The Neuroendocrine Genome:
2.1 The discovery of neuropeptides
2.2 Characteristics of neuropeptides
2.3 Neuropeptide genes in the genome
2.4 Perspectives
Acknowledgments
References
Further reading
CHAPTER 3: Transcriptome Dynamics
3.1 Approaching transcriptome dynamics
3.2 Transcriptome dynamics in neuroendocrine systems
3.3 Transcriptome dynamics in the pineal gland: lessons from different approaches
3.4 SN-NICHD transcriptome profiling web page
3.5 Perspectives
References
CHAPTER 4: New Players in the Neuroendocrine System:
4.1 Non-coding RNA contribution to gene regulation
4.2 Central role of the hypothalamus as a neuroendocrine organ
4.3 The pituitary gland and its central control of the peripheral endocrine system
4.4 The pineal gland – a connector between external environment and internal homeostasis
4.5 Perspectives
References
CHAPTER 5: Transcription Factors Regulating Neuroendocrine Development, Function, and Oncogenesis
5.1 The key players in transcriptional regulation
5.2 Classes of neuroendocrine-associated TFs
5.3 REST: a zinc finger TF with complex regulation and diverse function
5.4 Cooperation of TFs in neuroendocrine phenotype and function
5.5 Perspectives
References
CHAPTER 6: Epigenetics
6.1 Introduction
6.2 Early life adversity shapes the HPA axis
6.3 Epigenetic mechanisms: changes in the regulation of gene activity and expression that are not dependent on gene sequence
6.4 Methods of epigenetic analysis
6.5 Alterations in epigenetic processes
6.6 The epigenome and early life adversity
6.7 Perspectives
References
Further reading
Part B: Proteins, Posttranslational Mechanisms, and Receptors
CHAPTER 7: Proteome and Peptidome Dynamics
7.1 Introduction
7.2 Classic neuropeptides and proteins in the RSP
7.3 Techniques used to study the rate of peptide biosynthesis
7.4 Dynamics of intracellular proteins and peptides
7.5 Perspectives
References
CHAPTER 8: Neuropeptidomics
8.1 Neuropeptides – one gene, multiple products
8.2 Mining the neuropeptidome 21st-century style using mass spectrometry-based ‘omics approaches
8.3 What do all these peptides do? Follow-up functional studies
8.4 Perspectives
Acknowledgments
References
Further reading
CHAPTER 9: Posttranslational Processing of Secretory Proteins
9.1 Posttranslational modifications of secretory proteins
9.2 The family of proprotein convertases
9.3 The neural and endocrine functions of the proprotein convertases
9.4 Perspectives
References
CHAPTER 10: Neuropeptide Receptors
10.1 Neuropeptides as signaling molecules
10.2 Most neuropeptide receptors are G protein coupled
10.3 Neuropeptide receptor expression in the brain
10.4 Functional diversity of neuropeptide receptors
10.5 Perspectives
Acknowledgments
References
Part C: The Tool Kit
CHAPTER 11: Germline Transgenesis
11.1 Introduction
11.2 A transgene tool kit primer
11.3 Programmable nucleases: ZFN, TALEN, CRISPR/cas9 nuclease
11.4 Controlling transgenes with multicomponent systems
11.5 Validity of species and strain choices
11.6 Conclusion: perspectives and opportunities provided by the new toolbox
References
Further reading
CHAPTER 12: Somatic Transgenesis (Viral Vectors)
12.1 Introduction
12.2 Overview of viral vectors
12.3 Cell type-specific targeting of neuroendocrine neurons
12.4 Application of viral vectors
12.5 Perspectives
Acknowledgments
References
CHAPTER 13: Optogenetics Enables Selective Control of Cellular Electrical Activity
13.1 Introduction: what is optogenetics?
13.2 Optogenetic actuators allow selective control of cellular activity
13.3 Using optogenetic actuators to study the function of neurons and circuits
13.4 Methods for delivery of optogenetic actuators
13.5 Light delivery strategies for optical control
13.6 Study of the neuroendocrine system via optogenetics
13.7 Future prospects for optogenetics
Acknowledgments
References
CHAPTER 14: Non-Mammalian Models for Neurohypophysial Peptides
14.1 Historical overview
14.2 Evolutionary perspective on oxytocin and vasopressin peptides sequence and structure
14.3 Anatomy of neurohypophysial neurons in non-mammalian species
14.4 Function
14.5 Modes of communication
14.6 Perspectives
Acknowledgments
References
Part D: Case Studies – Integration and Translation
CHAPTER 15: Osmoregulation
15.1 Body fluid homeostasis
15.2 Osmosensory mechanisms
15.3 Function-related plasticity in the HNS
15.4 Perspectives
Acknowledgments
References
CHAPTER 16: Food Intake, Circuitry, and Energy Metabolism
16.1 Obesity is a problem … who can we blame?
16.2 Genetics as a tool
16.3 Body weight is homeostatically controlled
16.4 The brain (north of the neck)
16.5 Neuronal development and plasticity
16.6 Hedonic control of food intake
16.7 The natural response
References
CHAPTER 17: Stress Adaptation and the Hypothalamic-Pituitary-Adrenal Axis
17.1 Stress and stress response
17.2 Molecular mechanisms of glucocorticoid action
17.3 Regulation of HPA axis activity during stress
17.4 Pituitary targets in HPA axis regulation
17.5 Cytokines and HPA axis responses to stress
17.6 Perspectives
References
CHAPTER 18: Neuroendocrine Control of Female Puberty
18.1 Introduction
18.2 The hormonal changes of puberty
18.3 The glial contribution
18.4 Gene networks controlling puberty
18.5 Transcriptional repression: a key regulatory mechanism of prepubertal development
18.6 Epigenetic information: an integrating mechanism of reproductive neuroendocrine development
18.7 Perspectives
Acknowledgments
References
CHAPTER 19: Oxytocin, Vasopressin, and Diversity in Social Behavior
19.1 Introduction
19.2 Oxytocin, vasopressin, and social behavior
19.3 Oxytocin and vasopressin in the vertebrate brain
19.4 OXT and AVP receptors
19.5 Neuropeptide receptor expression contributes to individual differences in behavior
19.6 How diversity in receptor expression is achieved
19.7 Translational implications for OXTR and AVRP1A
19.8 Perspectives
References
Glossary
Index
End User License Agreement
Chapter 01
Table 1.1 Inferred evolutionary relationships between the different ancestral bilaterian peptidergic systems.
Table 1.2 OXT/AVP-like peptide sequences across the animal kingdom.
Table 1.3 Overview of OXT and AVP nonapeptide physiology.
Chapter 02
Table 2.1 Neuropeptide gene families and receptors. Neuropeptide genes are listed according to family relationships. For each gene, chromosomal localization, brain expression, encoded precursor structure, biologically active peptide products, and their established receptors are presented. Hyperlinks provide additional information to the locus in the human chromosome through http://genome.ucsc.edu/, to neuroanatomy of mouse brain expression through the Allen Brain Atlas, or GenePaint, structural comparison to related precursors and those of other species through the BLINK tool of NCBI, and to receptor properties through the IUPHAR database.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!