139,99 €
This book will present the theoretical and technological elements of nanosystems. Among the different topics discussed, the authors include the electromechanical properties of NEMS, the scaling effects that give these their interesting properties for different applications and the current manufacturing processes. The authors aim to provide useful tools for future readers and will provide an accurate picture of current and future research in the field.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 298
Veröffentlichungsjahr: 2015
Cover
Title
Copyright
Preface
Physical Constants
Notations
1: From MEMS to NEMS
1.1. Micro- and nanoelectromechanical systems: an overview
1.2. Conclusion
2: Transduction on the Nanometric Scale and the Notion of Noise
2.1. Mechanical transfer function
2.2. Transduction principles
2.3. Self-oscillation and noises
2.4. Conclusion
3: Monolithic Integration of NEMS with Their Readout Electronics
3.1. Foreword
3.2. The advantages of and main approaches to monolithic integration
3.3. Analysis of some significant achievements from the perspective of transduction
3.4. Conclusions and future perspectives
4: NEMS and Scaling Effects
4.1. Introduction
4.2. Near field effect in a nanostructure: Casimir force
4.3. Example of “intrinsic” scaling effects: electrical conduction laws
4.4. Optomechanical nano-oscillators and quantum optomechanics
4.5. Conclusion
5: Conclusion and Application Prospects: from Fundamental Physics to Applied Physics
Appendix
A1.1. “Bottom-up” and “top-down” manufacturing processes for nanowires
A1.2. Casimir force in detail
Bibliography
Index
End User License Agreement
Cover
Table of Contents
Begin Reading
1: From MEMS to NEMS
Table 1.1.
Orders of magnitude of the main electromechanical characteristics of a nanowire and the associated scaling laws when a reduction coefficient a is applied to its length, width and thickness: l’=αl, w’=αw, t’=αt (Figure 1.12) – E, p, c, κ are the Youngs modulus, density, the thermal capacity and thermal conductivity of the nanowire, respectively k
B
and T are the Boltzmann constant and temperature, respectively
2: Transduction on the Nanometric Scale and the Notion of Noise
Table 2.1.
Eigenvalues for the first four modes of a cantilever and a double-anchored beam
Table 2.2.
Ratio between two successive resonance frequencies for a cantilever and a doubly clamped beam
3: Monolithic Integration of NEMS with their Readout Electronics
Table 3.1.
Equivalent impedance values of different connection capacitances between the NEMS and its readout circuit for different operating frequencies
4: NEMS and Scaling Effects
Table 4.1.
Typical characteristics of a nano-accelerometer (see Figure 4.13)
Table 4.2.
Plasma frequency and relaxation coefficient for different levels of doping
Preface
Figure 1.
Pascaline
Figure 2.
Micromotor
Figure 3.
Silicon nanowires
1: From MEMS to NEMS
Figure 1.1.
Representation of a suspended mechanical structure containing a mass attached to the support by two suspensions enabling it to move (laterally and/or horizontally)
Figure 1.2.
Microsystem with a suspended membrane whose movement is caused by the force to be measured: a) micro pressure sensor (vertical movement of the membrane as a result of a pressure gradient); b) size of this component compared with a one cent coin [KIM 12]
Figure 1.3.
a) Microaccelerometer with capacitive detector via interdigitated electrostatic combs (horizontal movement of the test mass subjected to acceleration)
Figure 1.4.
a) RF microswitch: membrane actuated vertically by an electrostatic force enabling or not enabling ohmic contact between the two tracks depending on its position
Figure 1.5.
a) Analog devices two axes micromirror: the plate can move around two axes. These torsional movements are caused by an electrostatic moment [AKS 03]; b) a cantilever actuated horizontally by an electrostatic force between the beam and the control electrode [MIL 10]; c) square vibrating membrane forming an RF oscillator actuated by capacitive force [ARC 10]
Figure 1.6.
From MEMS to NEMS: typical sizes
Figure 1.7.
Example of mass measurement: a) Baculovirus measurements according to Ilic et al. [ILI 04]; b) xenon atom measurements according to Yang et al. [YAN 06] (the noise floor is 7 zg or 30 xenon atoms). For a color version of the figure, see www.iste.co.uk/duraffourg/nems.zip
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
