164,99 €
A comprehensive guide to privileged structures and their application in the discovery of new drugs
The use of privileged structures is a viable strategy in the discovery of new medicines at the lead optimization stages of the drug discovery process. Privileged Structures in Drug Discovery offers a comprehensive text that reviews privileged structures from the point of view of medicinal chemistry and contains the synthetic routes to these structures. In this text, the author—a noted expert in the field—includes an historical perspective on the topic, presents a practical compendium to privileged structures, and offers an informed perspective on the future direction for the field.
The book describes the up-to-date and state-of-the-art methods of organic synthesis that describe the use of privileged structures that are of most interest. Chapters included information on benzodiazepines, 1,4-dihydropyridines, biaryls, 4-(hetero)arylpiperidines, spiropiperidines, 2-aminopyrimidines, 2-aminothiazoles, 2-(hetero)arylindoles, tetrahydroisoquinolines, 2,2-dimethylbenzopyrans, hydroxamates, and bicyclic pyridines containing ring-junction nitrogen as privileged scaffolds in medicinal chemistry. Numerous, illustrative case studies document the current use of the privileged structures in the discovery of drugs. This important volume:
Designed for use by industrial medicinal chemists and process chemists, academic organic and medicinal chemists, as well as chemistry students and faculty, Privileged Structures in Drug Discovery offers a current guide to organic synthesis methods to access the privileged structures of interest, and contains medicinal chemistry case studies that document their application.
Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:
Seitenzahl: 1218
Veröffentlichungsjahr: 2018
Medicinal Chemistry and Synthesis
Larry Yet
Department of Chemistry,University of South AlabamaMobile, AL, USA
This edition first published 2018© 2018 John Wiley & Sons, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.
The right of Larry Yet to be identified as the author of this work has been asserted in accordance with law.
Registered OfficeJohn Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
Editorial Office111 River Street, Hoboken, NJ 07030, USA350 Main Street, Malden, MA 02148‐5020, USA
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats.
Limit of Liability/Disclaimer of WarrantyIn view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Library of Congress Cataloging‐in‐Publication Data
Names: Yet, Larry, author.Title: Privileged structures in drug discovery : medicinal chemistry and synthesis / Dr. Larry Yet, University of South Alabama, USA.Description: Edition 1. | Hoboken, NJ : Wiley, 2018. | Includes bibliographical references and index. |Identifiers: LCCN 2017047741 (print) | LCCN 2017058921 (ebook) | ISBN 9781118686355 (pdf) | ISBN 9781118686331 (epub) | ISBN 9781118145661 (cloth)Subjects: LCSH: Pharmaceutical chemistry. | Drug development–Methodology.Classification: LCC RS403 (ebook) | LCC RS403 .Y48 2018 (print) | DDC 615.1/9–dc23LC record available at https://lccn.loc.gov/2017047741
Cover Design: WileyCover Image: © MirageC/Gettyimages
In 1988, Ben Evans and his research team at Merck in their quest for potent, selective, orally effective cholecystokinin (CCK) antagonists studied the prototype 3‐(acylamino)‐5‐phenyl‐2H‐1,4‐benzodiazepines as therapeutic agents derived from the natural product lead asperlicin [1]. Evans recognized the core structure exhibited affinity toward central and peripheral benzodiazepine, opiate, CCK‐A, α‐adrenergic, serotonin, muscarinic, and angiotensin I receptors. To quote verbatim from the words of Ben Evans in this seminal publication, which set in force the term “privileged structures” for the next three decades in two different paragraphs:
Thus, this single ring system, the 5‐phenyl‐1,4‐benzodiazepine ring, provided ligands for a surprisingly diverse collection of receptors, the natural ligands for which appear to bear little resemblance to one another or to the benzodiazepines in question. The only obvious similarity is among the benzodiazepine structures themselves. These structures appear to contain common features which facilitate binding to various proteinaceous receptor surfaces, perhaps through binding elements different from those employed for binding of the natural ligands.
Arguments have been constructed to suggest that structures with high affinity for a given receptor may be more numerous, but at the same time more difficult to pinpoint than has heretofore been appreciated. The development of the compounds described here has illustrated an approach to that end having potentially wider utility, selective modification of “privileged structures” known to have provided ligands for diverse receptors in the past.
IUPAC has provided a structural definition of privileged structures—“Substructural feature which confers desirable (often drug‐like) properties on compounds containing that feature. Often consists of a semi‐rigid scaffold which is able to present multiple hydrophobic residues without undergoing hydrophobic collapse” [2].
There are many steps in the drug discovery process to deliver a drug from initial chemical hits, lead optimization, chemical development and scale‐ups, clinical trials, and FDA approvals to the market. Nowadays, it takes an average of 12–15 years and almost 800 million to 1 billion dollars of investment to deliver a single therapeutic drug to the market [3]. The lead optimization strategies are key steps for the medicinal chemists, and for this to occur, chemical hits for specific targets need to be validated. There are many strategies that have been employed in the search for chemical hits such as high‐throughput screening of corporate compound libraries [4–6], virtual screening [7–10], and natural products as sources of new drugs [11–13]. Once the chemical hits are discovered, “medicinal chemistry” tools such as fragment‐based drug design [14, 15], analogue‐based drug design [16–18], Lipinski’s Rule of Five [19], bioisosteric replacements [20–22], “repurposing” old drugs [23–25], computer‐aided drug design (CADD) [7, 26–29], scaffold hopping [30, 31], selective optimization of side activities (SOSA approach) [32], and early ADME pharmacokinetic analyses [33, 34] are employed in the lead optimization stages of the drug discovery process.
The use of privileged structures is a viable strategy in the discovery of new medicines at the lead optimization stages of the drug discovery process. There are several published reviews which find that “privileged structures” are useful concepts for the rational design of new lead drug candidates [35–40]. These “privileged structures” tend to provide highly favorable characteristics in which alterations to the core structures lead to different levels of potency and specificity. Using these privileged structures as starting points for drug discovery, thousands of molecules can be synthesized for a range of therapeutic biological targets of interest. Furthermore, privileged structures typically exhibit drug‐like properties, which could lead to viable leads for further development. One must be careful and thoughtful in the drug discovery process that sometimes there are no true explanations why certain structures are privileged or why they are active against a particular group of targets. Though numerous repeated frameworks appear in biologically active molecules, no clear explanations exist for their privileged nature.
Since the original definition of “privileged structures” coined by Evans in 1988, the definition has gone through several reiterations [39]. Privileged structures are liberally referred nowadays in many different terms such as privileged scaffolds, chemotypes, molecular fragments, privileged structural motifs, and molecular scaffolds. There are no rigorous rules that define a structure as “privileged,” but typically they contain two or three ring systems that are connected by single bonds or by ring‐fusion. The structures that results from such arrangements are usually rigid frameworks that can show the appended functionality in a well‐defined fashion that is desirable for molecular recognition of the biological target, and it is usually the variable nature of these functionalities that define the selectivity on a privileged core for a particular target.
Stockwell assembled one of the most comprehensive listings of privileged scaffolds in tabular forms [38]. We also provide a detailed tabular presentation of the privileged scaffolds based on ring size and fused‐ring classifications. The series of tables are based on structures, the titles of the review article, and the reference numbers in each table under the appropriate listings. We hope it will be a useful source of inspiration for the drug discovery community of organic and medicinal chemists.
There are only a few reviews published on the three‐ and four‐membered ring privileged structures and they are listed in Table 1.1.
Table 1.1 List of three‐ and four‐membered ring privileged structures reviews.
Structure
Number
Review title
Reference
Phenylcyclopropylamines
1
An overview of phenylcyclopropylamine derivatives: Biochemical and biological significance and recent developments
[41]
Aziridines
2
Synthetic aziridines in medicinal chemistry: A mini‐review
[42]
Oxetanes
3
Oxetanes: Recent advances in synthesis, reactivity, and medicinal chemistry
[43]
Oxetanes
3
Oxetanes as versatile elements in drug discovery and synthesis
[44]
Numerous reviews on the synthesis and biological activities of five‐membered ring privileged structures are outlined in Table 1.2.
Table 1.2 List of five‐membered ring privileged structures reviews.
Structure
Number
Review title
Reference
Pyrroles
4
Pyrrole: An emerging scaffold for construction of valuable therapeutic agents
[45]
Pyrazolines
5
Synthesis and biological activity of chiral dihydropyrazole: Potential lead for drug design
[46]
Pyrazolines
5
Pyrazolines: A biological review
[47]
Pyrazoles
6
Recent advances in bioactive pyrazoles
[48]
Pyrazoles
6
The therapeutic voyage of pyrazole and its analogs: A review
[49]
Pyrazoles
6
Pyrazoles as promising scaffold for the synthesis of anti‐inflammatory and/or antimicrobial agents: A review
[50]
Pyrazoles
6
Pyrazole derivatives as antitumor, anti‐inflammatory and antibacterial agents
[51]
Pyrazoles
6
Recent progress on pyrazole scaffold‐based antimycobacterial agents
[52]
2‐Imidazolines
7
Biologically active compounds based on the privileged 2‐imidazoline scaffold: The world beyond adrenergic/imidazoline receptor modulators
[53]
Imidazoles
8
Imidazoles as promising scaffolds for antibacterial activity: A review
[54]
Imidazoles
8
Imidazoles as potential antifungal agents: A review
[55]
Imidazoles
8
Comprehensive review in current developments of imidazole‐based medicinal chemistry
[56]
2‐Aminoimidazoles
9
2‐Aminoimidazoles in medicinal chemistry
[57]
1,2,3‐Triazoles
10
Click chemistry for drug development and diverse chemical‐biology applications
[58]
1,2,3‐Triazoles
10
1,2,3‐Triazole in heterocyclic chemistry, endowed with biological activity, through 1,3‐dipolar cycloadditions
[59]
1,2,3‐Triazoles
10
In situ
click chemistry: probing the binding landscapes of biological molecules
[60]
Tetrazoles
11
Potential pharmacological activities of tetrazoles in the new millennium
[61]
Tetrazoles
11
5‐Substituted‐1
H
‐tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods
[62]
Tetrazoles
11
Tetrazole as a core unit biological evaluation agent
[63]
Isoxazolidines
12
Isozazolidine: A privileged scaffold for organic and medicinal chemistry
[64]
Isoxazole
13
The isoxazole ring and its
N
‐oxide: A privileged core structure in neuropsychiatric therapeutics
[65]
Thiazoles
14
Recent applications of 1,3‐thiazole core structures in the identification of new lead compounds and drug discovery
[66]
Thiazoles
14
Bioactive thiazole and benzothiazole derivatives
[67]
Oxadiazoles
15, 16
Recent updates on biological activities of oxadiazoles
[68]
Oxadiazoles
15, 16
Synthesis and biological activities of oxadiazole derivatives: A review
[69]
1,2,4‐Oxadiazoles
15
[1,2,4]‐Oxadiazoles: Synthesis and biological applications
[70]
1,3,4‐Oxadiazoles
16
1,3,4‐Oxiadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents
[71]
1,3,4‐Oxadiazoles
16
1,3,4‐Oxadiazole: A privileged structure in antiviral agents
[72]
1,3,4‐Oxadiazoles
16
1,3,4‐Oxadiazole: A biologically active scaffold
[73]
1,3,4‐Oxadiazoles
16
1,3,4‐Oxadiazole derivatives as potential biological agents
[74]
1,3,4‐Oxadiazoles
16
Oxadiazoles as privileged motifs for promising anticancer leads: Recent advances and future prospects
[75]
1,3,4‐Thiadiazoles
17
Biological and pharmacological activities of 1,3,4‐thiadiazole based compounds
[76]
1,3,4‐Thiadiazoles
17
Thiadiazole–a promising structure in medicinal chemistry
[77]
2,4‐Thiazolidinediones
18
Therapeutic journey of 2,4‐thiazolidinediones as a versatile scaffold: An insight into structure–activity relationship
[78]
Cyclopentenediones
19
Chemical properties and biological activities of cyclopentenediones
[79]
Plenty of reviews are available for the synthesis and biological activities of six‐membered ring privileged structures listed in Table 1.3.
Table 1.3 List of six‐membered ring privileged structures reviews.
Structure
Number
Review title
Reference
Chalcones
20
Anti‐cancer chalcones: Structural and molecular target perspectives
[80]
Chalcones
20
Exploring pharmacological significance of chalcone scaffold: A review
[81]
Chalcones
20
Chalcone: A privileged structure in medicinal chemistry
[82]
Benzoquinones
21
Perspectives on medicinal properties of benzoquinone compounds
[83]
1,4‐Dihydropyridines
22
1,4‐Dihydropyridines: A class of pharmacologically important molecules
[84]
1,4‐Dihydropyridines
22
1,4‐Dihydropyridines as calcium channel ligands and privileged structures
[85]
1,4‐Dihydropyridines
22
Dihydropyridines: Evaluation of their current and future pharmacological applications
[86]
Piperidin‐4‐ones
23
Piperidin‐4‐one: The potential pharmacophore
[87]
Piperazines
24
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents
[88]
Piperazines
24
An evolving role of piperazine moieties in drug design and discovery
[89]
Dihydropyrimidinones
25
Recent advances in the pharmacology of dihydropyrimidinones
[90]
Dihydropyrimidinones
25
Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review
[91]
2,5‐Diketopiperazines
26
2,5‐Diketopiperazines as neuroprotective agents
[92]
Pyridazinones
27
The therapeutic journey of pyridazinone
[93]
Uracils
28
In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity and applications
[94]
Pyrazines
29
Unequivocal role of pyrazine ring in medicinally important compounds: A review
[95]
1,2,3‐Triazines
30
1,2,3‐Triazine scaffold as a potent biologically active moiety: A mini‐review
[96]
1,2,3‐Triazines
30
Triazine as a promising scaffold for its versatile biological behavior
[97]
1,2,4‐Triazines
31
1,2,4‐Triazine analogs as novel class of therapeutic agents
[98]
1,3,5‐Triazines
32
Medicinal chemistry discoveries among 1,3,5‐triazines: recent advances (2000–2013) as antimicrobial, anti‐TB and antimalarials
[99]
1,3,5‐Triazines
32
1,3,5‐Triazine‐based analogues of purines: From isosteres to privileged scaffolds in medicinal chemistry
[100]
There is no shortage of synthesis and biological activities of bicyclic 5/5 and 6/5 ring privileged structures reviews listed in Table 1.4.
Table 1.4 List of bicyclic 5/5 and 6/5 ring privileged structures reviews.
Structure
Number
Review title
Reference
Pyrrolizines
33
An integrated overview on pyrrolizines as potential anti‐inflammatory, analgesic and antipyretic agents
[101]
Pyrroloisoxazoles
34
Pyrroloisoxazole: A key molecule with diverse biological actions
[102]
Indoles
35
From nature to drug discovery: The indole scaffold as a “privileged structure”
[103]
Indoles
35
Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view
[104]
Indoles/indazoles
35/40
Chemistry and biology of indoles and indazoles
[105]
3‐Acetylindoles
36
3‐Acetylindoles: Synthesis, reactions and biological activities
[106]
Oxindoles
37
Oxindole: A chemical prism carrying plethora of therapeutic benefits
[107]
Oxindoles
37
Indolinones as promising scaffold as kinase inhibitors
[108]
Spirooxindoles
38
Spiroxoindoles: Promising scaffolds for anticancer agents
[109]
Phthalimides
39
Recent advances in the chemistry of phthalimide analogues and their therapeutic potential
[110]
Benzimidazoles
41
Comprehensive review in current developments of benzimidazole‐based medicinal chemistry
[111]
Benzimidazoles
41
Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine
[112]
Benzimidazoles
41
Benzimidazoles: An ideal privileged drug scaffold for the design of multitargeted anti‐inflammatory ligands
[113]
Imidazo[1,2‐
a
]pyridines
42
Recent progress in the pharmacology of imidazo[1,2‐
a
]pyridines
[114]
Imidazo[1,2‐
a
]pyridines
42
Imidazo[1,2‐
a
]pyridine scaffold as prospective therapeutic agents
[115]
Benzotriazoles
43
Benzotriazole: An overview on its versatile biological behavior
[116]
Benzofurans
44
Bioactive benzofuran derivatives: An insight on lead developments, radioligands and advances of the last decade
[117]
Benzofurans
44
Bioactive benzofuran derivates: A review
[118]
Benzofurans
44
Biological and medicinal significance of benzofuran
[119]
Benzoxazoles
45
Recent advances in the development of pharmacologically active compounds that contain a benzoxazole scaffold
[120]
Benzoxazoles
45
Benzoxazoles and oxazolopyridines in medicinal chemistry studies
[121]
2(3
H
)‐Benzoxazolones
46
2(3
H
)‐Benzoxazolone and bioisosteres as “privileged scaffold” in the design of pharmacological probes
[122]
Benzothiazoles
47
Recent advances in the chemistry and biology of benzothiazoles
[123]
2‐Arylbenzothiazoles
48
2‐Arylbenzothiazole as a privileged scaffold in drug discovery
[124]
Pyrazolo[1,5‐
a
]pyrimidines
49
An insight on synthetic and medicinal aspects of pyrazolo[1,5‐
a
]pyrimidine scaffold
[125]
Pyrazolo[3,4‐
d
]pyrimidines
50
4‐Amino‐substituted pyrazolo[4,3‐
d
]pyrimidines: Synthesis and biological properties
[126]
Pyrazolo[3,4‐
d
]pyrimidines
50
Biologically driven synthesis of pyrazolo[3,4‐
d
]pyrimidines as protein kinase inhibitors: An old scaffold as a new tool for medicinal chemistry and chemical biology studies
[127]
8‐Azapurines
51
8‐Azapurine nucleus: A versatile scaffold for different targets
[128]
Thalidomides
52
Thialidomide as a multi‐template for development of biologically active compounds
[129]
Thiazolo[4,5‐
d
]pyrimidines
53
Thiazolo[4,5‐
d
]pyrimidines as a privileged scaffold in drug discovery
[130]
Thieno[2,3‐
d
]pyrimidin‐4‐ones
54
Recent developments regarding the use of thieno[2,3‐
d
]pyrimidin‐4‐one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties
[131]
Tetrahydrothieno‐pyridines
55
Synthesis and biological activity of substituted‐4,5,6,7‐tetrahydrothienopyridines: A review
[132]
Again, there is no shortage of synthesis and biological activities of the popular bicyclic 6/6 ring privileged structures reviews listed in Table 1.5.
Table 1.5 List of bicyclic 6/6 and 6/7 ring privileged structures reviews.
Structure
Number
Review title
Reference
Coumarins
56
Biological importance of structurally diversified chromenes
[133]
Coumarins
56
Current developments of coumarin‐based anti‐cancer agents in medicinal chemistry
[134]
Coumarins
56
Coumarin: A privileged scaffold for the design and development of antineurodegenerative agents
[135]
Coumarins
56
Benzocoumarins: Isolation, synthesis, and biological activities
[136]
Isocoumarins
57
Isocoumarins, miraculous natural products blessed with diverse pharmacological activities
[137]
Chromones
58
Chromone: A valid scaffold in medicinal chemistry
[138]
Chroman‐4‐ones
59
Recent advances of chroman‐4‐one derivatives: Synthetic approaches and bioactivities
[139]
2‐Styrylchromones
60
Biological activities of 2‐styrylchromones
[140]
2‐Styrylchromones
60
An overview of 2‐styrylchromones: Natural occurrence, synthesis, reactivity and biological properties
[141]
Quinolines
61
The concept of privileged structures in rational drug design: Focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases
[142]
Quinolines
61
Biological activities of quinoline derivatives
[143]
Quinolines
61
Quinoline as a privileged scaffold in cancer drug discovery
[144]
Quinolines
61
A review on anticancer potential of bioactive heterocycle quinolone
[145]
8‐Hydroxyquinolines
62
8‐Hydroxyquinolines in medicinal chemistry: A structural perspective
[146]
8‐Hydroxyquinolines
62
8‐Hydroxyquinoline: A privileged structure with a broad‐ranging pharmacological potential
[147]
Quinoxalines
63
Quinoxaline, its derivatives and applications: A state of the art review
[148]
Quinoxalines
63
Quinoxaline‐based scaffolds targeting tyrosine kinases and their potential anticancer activity
[149]
Quinazolines
64
Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification
[150]
4‐Aminoquinazolines
65
4‐Aminoquinazoline analogs: A novel class of anticancer agents
[151]
1,8‐Naphthyridines
66
1,8‐Naphthyridine derivatives: A review of multiple biological activities
[152]
4‐Quinolone‐3‐carboxylic acids
67
The 4‐quinolone‐3‐carboxylic acid motif as a multivalent scaffold in medicinal chemistry
[153]
Dihydroquinazolinones
68
Synthetic strategy with representation on mechanistic pathway for the therapeutic applications of dihydroquinazolinones
[154]
Phthalazinones
69
Phthalazin‐1(2
H
)‐one as a remarkable scaffold in drug discovery
[155]
Dihydrobenzo[1,4]‐oxathiines
70
Dihydrobenzo[1,4]oxathiine: A multi‐potent pharmacophoric heterocyclic nucleus
[156]
1,4‐Benzothiazines
71
Functionalized 1,4‐benzothiazine: A versatile scaffold with diverse biological properties
[157]
Pyridopyrimidines
72
Recent advances in the chemistry and biology of pyridopyrimidines
[158]
1,4‐Benzodiazepine
73
Recent development in [1,4]benzodiazepines as potent anticancer agents: A review
[159]
1,4‐Benzodiazepine
73
Benzo‐ and thienobenzodiazepines: Multi‐target drugs for CNS disorders
[160]
1,5‐Benzothiazepine
74
1,5‐Benzothiazepine, a versatile pharmacophore: A review
[161]
A general review on the use of tricyclic structures in medicinal chemistry appeared a decade ago [162]. Table 1.6 outlines recent reviews on the use of specific tricyclic and tetracyclic structures employed in medicinal chemistry programs.
Table 1.6 List of tricyclic and tetracyclic ring privileged structures reviews.
Structure
Number
Review title
Reference
Acridines
75
The concept of privileged structures in rational drug design: Focus on acridine and quinolone scaffolds in neurodegenerative and protozoan diseases
[142]
Xanthones
76
Recent insight into the biological activities of synthetic xanthone derivatives
[163]
Carbazoles
77
Biological potential of carbazole derivatives
[164]
Pyrrolo[1,2‐
a
]indoles
78
Synthesis and some biological properties of pyrrolo[1,2‐
a
]indoles
[165]
Pyrazoloquinolines
79
An overview on synthetic methodologies and biological activities of pyrazoloquinolines
[166]
Pyrazoloquinazolines
80
Pyrazoloquinazolines: Synthetic strategies and bioactivities
[167]
Pyrroloquinazolines
81
The chemistry and pharmacology of privileged pyrroloquinazolines
[168]
Pyrroloquinoxalines
81
Recent progress in biological activities and synthetic methodologies of pyrroloquinoxalines
[169]
Imidazoquinolines
82
Imidazoquinolines: Recent developments in anticancer activity
[170]
Pyrrolobenzodiazepines
83
Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines
[171]
Anthraquinones
84
Anthraquinones as pharmacological tools and drugs
[172]
6
H
‐indolo[2,3‐
b
]quinoxalines
85
6
H
‐indolo[2,3‐
b
]quinoxalines: DNA and protein interacting scaffold for pharmacological studies
[173]
If we entertained the idea of “privileged structures” as core structures for low molecular weight compounds, analogous to the fragment‐based method of drug discovery, combinatorial chemistry protocols can be established for privileged structures, with their inherent affinity for diverse biological receptors, represent an ideal source of core scaffolds and capping fragments for the design and synthesis of combinatorial libraries to enable numerous targets to be processed simultaneously across different therapeutic areas [174]. The majority of privileged structures contain multiple sites for diversification by chemical modifications to achieve a huge number of possible pharmacological profiles.
Dolle published very comprehensive surveys of combinatorial libraries annually for over a decade [175–187]. Many of the information in the annual surveys show original library syntheses based on privileged structures. Table 1.7 shows combinatorial synthetic reviews on privileged structures.
Table 1.7 Combinatorial synthesis of privileged structures reviews.
Review title
Reference
Recent advances in the solid‐phase combinatorial synthetic strategies for the quinoxaline, quinazoline and benzimidazole based privileged structures
[188]
The combinatorial synthesis of bicyclic privileged structures or privileged substructures
[189]
Privileged scaffolds for library design and drug discovery
[38]
Recent advances in the solid‐phase combinatorial synthetic strategies for the benzodiazepine based privileged structures
[190]
Exploring privileged structures: the combinatorial synthesis of cyclic peptides
[191]
Libraries from natural product‐like scaffolds
[192]
Privileged structure‐based combinatorial libraries targeting G protein‐coupled receptors
[193]
Nitrogen containing privileged structures and their solid phase combinatorial synthesis
[194]
Design, synthesis, and evaluation of small‐molecule libraries
[195]
Advances in solution‐ and solid‐phase synthesis toward the generation of natural product‐like libraries
[196]
The author’s inspiration for this monograph occurred years ago when three pivotal reviews in the literature appeared on the topic of privileged structures in drug discovery. Stockwell’s [38] monumental and comprehensive tables of privileged scaffolds for library design and Fraga’s [37], DeSimone’s [39], and Costantino’s [40] reviews on selected privileged structures case studies spurred the author’s motivation to pursue a monograph on this topic of “privileged structures.” During the preparation of this monograph, Bräse edited a book titled Privileged Scaffolds in Medicinal Chemistry – Design, Synthesis, Evaluation in 2016 from different viewpoints [197]. Chapters included β‐lactams, (benz)imidazoles, pyrazoles, quinolones, isoquinolines, rhodanines, coumarins, xanthones, spirocycles, and cyclic peptides as privileged scaffolds in medicinal chemistry. Other key chapters included heterocycles containing nitrogen and sulfur as potent biologically active scaffolds, thiirane class of gelatinase inhibitors as a privileged template that crosses the blood–brain barrier, natural product scaffolds of value in medicinal chemistry, and ergot alkaloids. We will keep the nomenclature of “privileged structures” for the rest of the book !!!
The author has selected a dozen privileged structures such as the benzodiazepines, 1,4‐dihydropyridines, biphenyls, 4‐arylpiperidines, spiropiperidines, 2‐aminopyrimidines, 2‐aminothiazoles, 2‐arylindoles, tetrahydroisoquinolines, 2,2‐dimethylbenzopyrans, hydroxamates, and imidazopyridines to showcase the use of these structures in drug discovery programs. Each chapter will have a listing of the FDA‐approved marketed drug with that “privileged structure,” followed by detailed sections of medicinal chemistry case studies across multiple therapeutic areas and finally comprehensive sections on the syntheses of the structures employing classical and state‐of‐the‐art organic chemistry reactions.
1
B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo, R. M. Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber, P. S. Anderson, R. S. L. Chang, V. J. Lotti, D. J. Cerino, T. B. Chen, P. J. Kling, K. A. Kunkel, J. P. Springer, J. Hirshfield,
J. Med. Chem.
1988
,
31
, 2235.
2
D. Maclean, J. J. Baldwin, V. T. Ivanov, Y. Kato, A. Shaw, P. Schenider, E. M. Gordon,
J. Comb. Chem.
2000
,
2
, 562.
3
S. Morgan, P. Grootendorst, J. Lexchine, C. Cunningham, D. Greyson,
Health Policy
2011
,
100
, 4.
4
D. A. Pereira, J. A. Williams,
Br. J. Pharmacol.
2007
,
152
, 53.
5
S. W. Djuric, I. Akritopoulou‐Zanze, P. B. Cox, S. Galasinski,
Annu. Rep. Med. Chem.
2010
,
45
, 409.
6
J. Huser,
High‐Throughput Screening in Drug Discovery
. Wiley‐VCH, Weinheim,
2006
.
7
D. B. Kitchen, H. Decornez, J. R. Furr, J. Bajorath,
Nat. Rev. Drug Discov.
2004
,
3
, 935.
8
A. D. Andricopula, R. V. C. Guido, G. Oliva,
Curr. Med. Chem.
2008
,
15
, 37.
9
T. I. Oprea, H. Matter,
Curr. Opin. Chem. Biol.
2004
,
8
, 349.
10
A. N. Jain,
Curr. Opin. Drug Discovery Devel.
2004
,
7
, 396.
11
D. J. Newman, G. M. Cragg,
J. Nat. Prod.
2016
,
79
, 629.
12
M. S. Butler,
J. Nat. Prod.
2004
,
67
, 2141.
13
T. Beghyn, R. Deprez‐Poulain, N. Willand, B. Folleas, B. Deprez,
Chem. Biol. Drug Des.
2008
,
72
, 3.
14
P. J. Hajduk, J. A. Greer,
Nat. Rev. Drug Discov.
2007
,
6
, 211.
15
W. Jahnke, D. A. Erlanson,
Fragment‐based Approaches in Drug Discovery
. Wiley‐VCH, Weinheim,
2006
.
16
J. Fischer, C. R. Ganellin,
Analogue‐based Drug Design
. Wiley‐VCH, Weinheim,
2006
.
17
J. Fischer, C. R. Ganellin,
Analogue‐based Drug Discovery II
. Wiley‐VCH, Weinheim,
2010
.
18
J. Fischer, C. R. Ganellin, D. Rotell,
Analogue‐based Drug Discovery III
. Wiley‐VCH, Weinheim,
2012
.
19
C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney,
Adv. Drug Deliv. Rev.
1997
,
23
, 3.
20
N. A. Meanwell,
J. Med. Chem.
2011
,
54
, 2529.
21
L. M. Lima, E. J. Barreiro,
Curr. Med. Chem.
2005
,
12
, 23.
22
P. H. Olesen,
Curr. Opin. Drug Discov. Devel.
2001
,
4
, 471.
23
C. R. Chong, J. David J. Sullivan,
Nature
2007
,
448
, 645.
24
S. M. Strittmatter,
Nat. Med.
2014
,
20
, 590.
25
G. M. Cragg, P. G. Grothaus, D. J. Newman,
J. Nat. Prod.
2014
,
77
, 703.
26
I. M. Kapetanovic,
Chem. Biol. Interact.
2008
,
171
, 165.
27
Y. Tang, W. Zhu, K. Chen, H. Jiang,
Drug Discov. Today Technol.
2006
,
3
, 307.
28
H.‐J. Huang, H. W. Yu, C.‐Y. Chen, C.‐H. Hsu, H.‐Y. Chen, K.‐J. Lee, F.‐J. Tsai, C. Y.‐C. Chen, J. Taiwan
J. Taiwan Inst. Chem. Eng.
2010
,
41
, 623.
29
A. K. Ghosh, S. Gemma,
Structure‐based Design of Drugs and Other Bioactive Molecules
. Wiley‐VCH, Weinheim,
2014
.
30
N. Brown, E. Jacoby,
Mini Rev. Med. Chem.
2006
,
6
, 1217.
31
N. Brown,
Scaffold Hopping in Medicinal Chemistry
. Wiley‐VCH, Weinheim,
2013
.
32
C. G. Wermuth,
J. Med. Chem.
2004
,
47
, 1303.
33
E. H. Kerns, L. Di,
Drug‐Like Properties: Concepts, Structure Design and Methods
. Academic Press, New York,
2008
.
34
D. A. Smith, C. Allerton, A. S. Kalgutkar, H. v. d. Waterbeemd, D. K. Walker,
Pharmacokinetics and Metabolism in Drug Design
, 3rd Edition. Wiley‐VCH, Weinheim,
2012
.
35
A. A. Patchett, R. P. Nargund,
Annu. Rep. Med. Chem.
2000
,
35
, 289.
36
H. Zhao, J. Dietrich,
Expert Opin. Drug Discovery
2015
,
10
, 781.
37
C. D. Duarte, E. J. Barreiro, C. A. M. Fraga,
Mini Rev. Med. Chem.
2007
,
7
, 1108.
38
M. E. Welsch, S. A. Snyder, B. R. Stockwell,
Curr. Opin. Chem. Biol.
2010
,
14
, 347.
39
R. W. DeSimone, K. S. Currie, S. A. Mitchell, J. W. Darrow, D. A. Pippin,
Comb. Chem. High Throughput Screen.
2004
,
7
, 473.
40
L. Costantino, D. Barlocco,
Curr. Med. Chem.
2006
,
13
, 65.
41
M. N. A. Khan, T. Suzuki, N. Miyata,
Med. Res. Rev.
2013
,
33
, 873.
42
G. S. Singh,
Mini Rev. Med. Chem.
2016
,
16
, 892.
43
J. A. Bull, R. A. Croft, O. A. Davis, R. Doran, K. F. Morgan,
Chem. Rev.
2016
,
116
, 12150.
44
J. A. Burkhard, G. Wuitschik, M. Rogers‐Evans, K. Mller, E. M. Carreira,
Angew. Chem. Int. Ed.
2010
,
49
, 9052.
45
S. S. Gholap,
Eur. J. Med. Chem.
2016
,
110
, 13.
46
X.‐H. Liu, B.‐F. Ruan, J. Li, F.‐H. Chen, B.‐A. Song, H.‐L. Zhu, P. S. Bhadury, J. Zhao,
Mini Rev. Med. Chem.
2011
,
11
, 771.
47
A. Marella, M. R. Ali, M. T. Alam, R. Saha, O. Tanwar, M. Akhter, M. Shaquiquzzaman, M. M. Alam,
Mini Rev. Med. Chem.
2013
,
13
, 921.
48
S. G. Küçükgüzel, S. Senkardes,
Eur. J. Med. Chem.
2015
,
97
, 786.
49
M. F. Khan, M. M. Alam, G. Verma, W. Akhtar, M. Akhter, M. Shaquiquzzaman,
Eur. J. Med. Chem.
2016
,
120
, 170.
50
A. A. Bekhit, A. Hymete, A. E.‐D. A. Bekhit, A. Damtew, H. Y. Aboul‐Enein,
Mini Rev. Med. Chem.
2010
,
10
, 1014.
51
J.‐J. Liu, M.‐y. Zhao, X. Zhang, X. Zhao, H.‐L. Zhu,
Mini Rev. Med. Chem.
2013
,
13
, 1957.
52
R. S. Keri, K. Chand, T. Ramakrishnappa, B. M. Nagaraja,
Arch. Pharm. Chem. Life Sci.
2015
,
348
, 299.
53
M. Krasavin,
Eur. J. Med. Chem.
2015
,
97
, 525.
54
N. Rani, A. Sharma, R. Singh,
Mini Rev. Med. Chem.
2013
,
13
, 1812.
55
N. Rani, A. Sharma, G. K. Gupta, R. Singh,
Mini Rev. Med. Chem.
2013
,
13
, 1626.
56
L. Zhang, X.‐M. Peng, G. L. V. Damu, R.‐X. Geng, C.‐H. Zhou,
Med. Res. Rev.
2013
,
34
, 340.
57
D. Kikelj, J. Ila,
Mini Rev. Med. Chem.
2013
,
13
, 1921.
58
P. Thirumurugan, D. Matosiuk, K. Jozwiak,
Chem. Rev.
2013
,
113
, 4905.
59
A. Lauria, R. Delisi, F. Mingoia, A. Terenzi, A. Martorana, G. Barone, A. M. Almerico,
Eur. J. Org. Chem.
2014
, 3289.
60
S. K. M. M. G. Finn,
Chem. Soc. Rev.
2010
,
39
, 1252.
61
P. B. Mohite, V. H. Bhaskar,
Int. J. PharmTech Res.
2011
,
3
, 1557.
62
R. J. Herr,
Bioorg. Med. Chem.
2002
,
10
, 3379.
63
S. M. Krishna, Y. Padmalatha, L. K. Ravindranath,
Int. J. Med. Pharm. Res.
2015
,
3
, 1004.
64
M. Berthet, T. Cheviet, G. Dujardin, I. Parrot, J. Martinez,
Chem. Rev.
2016
,
116
, 15235.
65
G. N. Pairas, F. Perperopoulou, P. G. Tsoungas, G. Varvounis,
ChemMedChem
2017
,
12
, 408.
66
A. Ayati, S. Emami, A. Asadipour, A. Shafiee, A. Foroumadi,
Eur. J. Med. Chem.
2015
,
97
, 699.
67
A. Rouf, C. Tanyeli,
Eur. J. Med. Chem.
2015
,
97
, 911.
68
R. Saha, O. Tanwar, A. Marella, M. M. Alam, M. Akhter,
Mini Rev. Med. Chem.
2013
,
13
, 1027.
69
A. Vaidya, S. Jain, P. Jain, P. Jain, N. Tiwari, R. Jain, R. Jain, A. K. Jain, R. K. Agrawal,
Mini Rev. Med. Chem.
2016
,
16
, 825.
70
R. O. Bora, B. Dar, V. Pradhan, M. Farooqui,
Mini Rev. Med. Chem.
2014
,
14
, 355.
71
S. Bajaj, V. Asati, J. Singh, P. P. Roy,
Eur. J. Med. Chem.
2015
,
97
, 124.
72
Z. Li, P. Zhan, X. Liu,
Mini Rev. Med. Chem.
2011
,
11
, 1130.
73
H. Khalilullah, M. J. Ahsan, M. Hedaitullah, S. Khan, B. Ahmed,
Mini Rev. Med. Chem.
2012
,
12
, 789.
74
J. Sun, J. A. Makawana, H.‐L. Zhu,
Mini Rev. Med. Chem.
2013
,
13
, 1725.
75
I. Khan, A. Ibrar, N. Abbas,
Arch. Pharm. Chem. Life Sci.
2014
,
347
, 1.
76
J. Matysiak,
Mini Rev. Med. Chem.
2015
,
15
, 762.
77
Y. Li, J. Geng, Y. Liu, S. Yu, G. Zhao,
ChemMedChem
2013
,
8
, 27.
78
M. J. Naim, M. J. Alam, S. Ahmad, F. Nawaz, N. Shrivastava, M. Sahu, O. Alam,
Eur. J. Med. Chem.
2017
,
129
, 218.
79
Z. Sevcikova, M. Pour, D. Novak, J. Ulrichova, J. Vacek,
Mini Rev. Med. Chem.
2014
,
14
, 322.
80
D. K. Mahapatra, S. K. Bharti, V. Asati,
Eur. J. Med. Chem.
2015
,
98
, 69.
81
N. K. Sahu, S. S. Balbhadra, J. Choudhary, D. V. Kohli,
Curr. Med. Chem.
2012
,
19
, 209.
82
C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, Z. Miao,
Chem. Rev.
2017
,
117
, 7762.
83
P. R. Dandawate, A. C. Vyas, S. B. Padhye, M. W. Singh, J. B. Baruah,
Mini Rev. Med. Chem.
2010
,
10
, 436.
84
S. A. Khedkar, P. B. Auti,
Mini Rev. Med. Chem.
2014
,
14
, 282.
85
D. J. Triggle,
Cell. Mol. Neurobiol.
2003
,
23
, 293.
86
N. Edraki, A. R. Mehdipour, M. Khoshneviszadeh, R. Miri,
Drug Discov. Today
2009
,
14
, 1058.
87
S. K. Sahu, B. K. Dubey, A. C. Tripathi, M. Koshy, S. K. Saraf,
Mini Rev. Med. Chem.
2013
,
13
, 565.
88
M. Shaquiquzzaman, G. Verma, A. Marella, M. Akhter, W. Akhtar, M. F. Khan, S. Tasneem, M. M. Alam,
Eur. J. Med. Chem.
2015
,
102
, 487.
89
R. V. Patel, S. W. Park,
Mini Rev. Med. Chem.
2013
,
13
, 1579.
90
J.‐P. Wan, Y. Pan,
Mini Rev. Med. Chem.
2012
,
12
, 337.
91
R. Kaur, S. Chaudhary, K. Kumar, M. K. Gupta, R. K. Rawal,
Eur. J. Med. Chem.
2017
,
132
, 108.
92
C. Cornacchia, I. Cacciatore, L. Baldassarre, A. Mollica, F. Feliciani, F. Pinnen,
Mini Rev. Med. Chem.
2012
,
12
, 2.
93
W. Akhtar, M. Shaquiquzzaman, M. Akhter, G. Verma, M. F. Khan, M. M. Alam,
Eur. J. Med. Chem.
2016
,
123
, 256.
94
A. Pałasz, D. Ciez,
Eur. J. Med. Chem.
2015
,
97
, 582.
95
P. B. Miniyar, P. R. Murumkar, P. S. Patil, M. A. Barmade, K. G. Bothara,
Mini Rev. Med. Chem.
2013
,
13
, 1607.
96
R. Kumar, A. D. Singh, J. Singh, H. Singh, R. K. Roy, A. Chaudhary,
Mini Rev. Med. Chem.
2014
,
14
, 72.
97
P. Singla, V. Luxami, K. Paul,
Eur. J. Med. Chem.
2015
,
102
, 39.
98
R. Kumar, T. S. Sirohi, H. Singh, R. Yadav, R. K. Roy, A. Chaudhary, S. N. Pandeya,
Mini Rev. Med. Chem.
2014
,
14
, 168.
99
R. V. Patel, Y.‐S. Keum, S. W. Park,
Mini Rev. Med. Chem.
2014
,
14
, 768.
100
F. P. L. Lim, A. V. Dolzhenko,
Eur. J. Med. Chem.
2014
,
85
, 371.
101
A. M. Gouda, A. H. Abdelazeem,
Eur. J. Med. Chem.
2016
,
114
, 257.
102
P. Anand, B. Singh,
Mini Rev. Med. Chem.
2014
,
14
, 623.
103
F. R. d. S. Alves, E. J. Barreiro, C. A. M. Fraga,
Mini Rev. Med. Chem.
2009
,
9
, 782.
104
N. Chadha, O. Silakari,
Eur. J. Med. Chem.
2017
,
134
, 159.
105
N. A. S. Ali, B. A. Dar, V. Pradhan, M. Farooqui,
Mini Rev. Med. Chem.
2013
,
13
, 1792.
106
M. A. Metwally, S. Shaaban, B. F. Abdel‐Wahabb, G. A. El‐Hiti,
Curr. Org. Chem.
2009
,
13
, 1475.
107
M. Kaur, M. Singh, N. Chadha, O. Silakari,
Eur. J. Med. Chem.
2016
,
123
, 858.
108
C. R. Prakash, S. Raja,
Mini Rev. Med. Chem.
2012
,
12
, 98.
109
B. Yu, D.‐Q. Yu, H.‐M. Liu,
Eur. J. Med. Chem.
2015
,
97
, 673.
110
U. Sharma, P. Kumar, N. Kumar, B. Singh,
Mini Rev. Med. Chem.
2010
,
10
, 678.
111
R. S. Keri, A. Hiremathad, S. Budagumpi, B. M. Nagaraja,
Chem. Biol. Drug Des.
2015
,
86
, 19.
112
O. O. Ajani, D. V. Aderohunmu, C. O. Ikpo, A. E. Adedapo, I. O. Olanrewaju,
Arch. Pharm. Chem. Life Sci.
2016
,
349
, 475.
113
G. Kaur, M. Kaur, O. Silakari,
Mini Rev. Med. Chem.
2014
,
14
, 747.
114
C. Enguehard‐Gueiffier, A. Gueiffier,
Mini Rev. Med. Chem.
2007
,
7
, 888.
115
A. Deep, R. K. Bhatia, R. Kaur, S. Kumar, U. K. Jain, H. Singh, S. Batra, D. Kaushik, P. K. Deb,
Curr. Top. Med. Chem.
2017
,
17
, 238.
116
I. Briguglio, S. Piras, P. Corona, E. Gavini, M. Nieddu, G. Boatto, A. Carta,
Eur. J. Med. Chem.
2015
,
97
, 612.
117
A. Radadiya, A. Shah,
Eur. J. Med. Chem.
2015
,
97
, 356.
118
H. K. Shamsuzzaman,
Eur. J. Med. Chem.
2015
,
97
, 483.
119
R. J. Nevagi, S. N. Dighe, S. N. Dighe,
Eur. J. Med. Chem.
2015
,
97
, 561.
120
S. Singh, G. Veeraswamy, D. Bhattarai, J.‐I. Goo, K. Lee, Y. Choi,
Asian J. Org. Chem.
2015
,
4
, 1338.
121
C. S. Demmer, L. Bunch,
Eur. J. Med. Chem.
2015
,
97
, 778.
122
J. Poupaert, P. Caratob, E. Colacinoa,
Curr. Med. Chem.
2005
,
12
, 877.
123
R. K. Gill, R. K. Rawal, J. Bariwal,
Arch. Pharm. Chem. Life Sci.
2015
,
348
, 155.
124
A. A. Weekes, A. D. Westwell,
Curr. Med. Chem.
2009
,
16
, 2430.
125
S. Cherukupalli, R. Karpoormath, B. Chandrasekaran, G. A. Hampannavar, N. Thapliyal, V. N. Palakollu,
Eur. J. Med. Chem.
2017
,
126
, 298.
126
S. Schenone, O. Bruno, M. Radi, M. Botta,
Mini Rev. Med. Chem.
2009
,
6
, 220.
127
S. Schenone, M. Radi, F. Musumeci, C. Brullo, M. Botta,
Chem. Rev.
2014
,
114
, 7189.
128
I. Giorgi, V. Scartoni,
Mini Rev. Med. Chem.
2009
,
9
, 1367.
129
Y. Hashimoto,
Arch. Pharm. Chem. Life Sci.
2008
,
341
, 536.
130
B. Kuppast, H. Fahmy,
Eur. J. Med. Chem.
2016
,
113
, 198.
131
K. Bozorov, J.‐Y. Zhao, B. Elmuradov, A. Pataer, H. A. Aisa,
Eur. J. Med. Chem.
2015
,
102
, 552.
132
J. N. Sangshetti, A. S. Zambare, F. A. K. Khan, I. Gonjari, Z. Zaheer,
Mini Rev. Med. Chem.
2014
,
14
, 988.
133
M. Costa, T. A. Dias, A. Brito, F. Proenca,
Eur. J. Med. Chem.
2016
,
123
, 487.
134
S. Emami, S. Dadashpour,
Eur. J. Med. Chem.
2015
,
102
, 611.
135
E. Jameel, T. Umar, J. Kumar, N. Hoda,
Chem. Biol. Drug Des.
2016
,
87
, 21.
136
H.‐N. Lv, P.‐F. Tu, Y. Jiang,
Mini Rev. Med. Chem.
2014
,
14
, 603.
137
A. Saeed,
Eur. J. Med. Chem.
2016
,
116
, 290.
138
A. Gaspar, M. J. Matos, J. Garrido, E. Uriarte, F. Borges,
Chem. Rev.
2014
,
114
, 4960.
139
S. Emami, Z. Ghanbarimasir,
Eur. J. Med. Chem.
2015
,
93
, 539.
140
A. Gomes, M. Freitas, E. Fernandes, J. L. F. C. Lima,
Mini Rev. Med. Chem.
2010
,
10
, 1.
141
C. M. M. Santos, A. M. S. Silva,
Eur. J. Org. Chem.
2017
, 3115.
142
S. Bongarzone, M. L. Bolognesi,
Expert Opin. Drug Discovery
2011
,
6
, 251.
143
S. Kumar, S. Bawa, H. Gupta,
Mini Rev. Med. Chem.
2009
,
9
, 1648.
144
V. R. Solomon, H. Lee,
Curr. Med. Chem.
2011
,
18
, 1488.
145
O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi, S. Bawa,
Eur. J. Med. Chem.
2015
,
97
, 871.
146
V. Oliveri, G. Vecchio,
Eur. J. Med. Chem.
2016
,
120
, 252.
147
Y. Song, H. Xu, W. Chen, P. Zhan, X. Liu,
Med. Chem. Commun.
2015
,
6
, 61.
148
J. A. Pereira, A. M. Pessoa, M. N. D. S. Cordeiro, R. Fernandes, C. Prudencio, J. P. Noronha, M. Vieira,
Eur. J. Med. Chem.
2015
,
97
, 664.
149
A. M. S. E. Newahie, N. S. M. Ismail, D. A. A. E. Ella, K. A. M. Abouzid,
Arch. Pharm. Chem. Life Sci.
2016
,
349
, 309.
150
I. Khan, S. Zaib, S. Batool, N. Abbas, Z. Ashraf, J. Iqbal, A. Saeed,
Bioorg. Med. Chem.
2016
,
24
, 2361.
151
K. Singh, P. P. Sharma, A. Kumar, A. Chaudhary, R. K. Roy,
Mini Rev. Med. Chem.
2013
,
13
, 1177.
152
A. Madaan, R. Verma, V. Kumar, A. T. Singh, S. K. Jain, M. Jaggi,
Arch. Pharm. Chem. Life Sci.
2015
,
348
, 837.
153
C. Mugnaini, S. Pasquini, F. Corelli,
Curr. Med. Chem.
2009
,
16
, 1746.
154
K. Hemalatha, G. Madhumitha,
Eur. J. Med. Chem.
2016
,
123
, 596.
155
N. Vila, P. Besada, T. Costas, M. C. Costas‐Lago, C. Teran,
Eur. J. Med. Chem.
2015
,
97
, 462.
156
C. Viglianisi, S. Menichetti,
Curr. Med. Chem.
2010
,
17
, 915.
157
O. O. Ajani,
Arch. Pharm. Chem. Life Sci.
2012
,
345
, s841.
158
F. Buron, J. Y. Merour, M. Akssira, G. Guillaumet, S. Routier,
Eur. J. Med. Chem.
2015
,
95
, 76.
159
R. K. Gill, S. O. Kaushik, J. Chugh, S. Bansal, A. Shah, J. Bariwal,
Mini Rev. Med. Chem.
2014
,
14
, 229.
160
F. J. B. M. Junior, H. I. L. Scotti, S. P. S. Botelho, M. S. D. Silva, M. T. Scotti,
Mini Rev. Med. Chem.
2015
,
15
, 630.
161
J. B. Bariwal, K. D. Upadhyay, A. T. Manvar, J. C. Trivedi, J. S. Singh, K. S. Jain, A. K. Shah,
Eur. J. Med. Chem.
2008
,
43
, 2279.
162
V. Fedi, A. Guidi, M. Altamura,
Mini Rev. Med. Chem.
2008
,
8
, 1464.
163
Shagufta, I. Ahmad,
Eur. J. Med. Chem.
2016
,
116
, 267.
164
A. Gluszynska,
Eur. J. Med. Chem.
2015
,
94
, 405.
165
N. Monakhova, S. Ryabova, V. Makarov,
J. Heterocycl. Chem.
2016
,
53
, 685.
166
A. Gaurav, V. Gautam, R. Singh,
Mini Rev. Med. Chem.
2010
,
10
, 1194.
167
M. Garg, M. Chauhan, P. K. Singh, J. M. Alex, R. Kumar,
Eur. J. Med. Chem.
2015
,
97
, 444.
168
B. Chao, B. X. Li, X. Xiao,
Med. Chem. Commun.
2015
,
6
, 510.
169
A. Huang, C. Ma,
Mini Rev. Med. Chem.
2013
,
13
, 607.
170
S. A. Patil, S. A. Patil, R. Patil, R. Hashizume,
Mini Rev. Med. Chem.
2016
,
16
, 309.
171
B. Gerratana,
Med. Res. Rev.
2012
,
32
, 254.
172
E. M. Malik, C. E. Muller,
Med. Res. Rev.
2016
,
36
, 705.
173
N. S. H. N. Moorthy, E. Manivannan, C. Karthikeyan, P. Trivedi,
Mini Rev. Med. Chem.
2013
,
13
, 1415.
174
G. Müller,
Drug Discov. Today
2003
,
8
, 681.
175
R. E. Dolle,
Mol. Divers.
1998
,
3
, 199.
176
R. E. Dolle, K. H. Nelson,
J. Comb. Chem.
1999
,
1
, 235.
177
R. E. Dolle,
J. Comb. Chem.
2000
,
2
, 383.
178
R. E. Dolle,
J. Comb. Chem.
2001
,
3
, 477.
179
R. E. Dolle,
J. Comb. Chem.
2002
,
4
, 369.
180
R. E. Dolle,
J. Comb. Chem.
2003
,
5
, 693.
181
R. E. Dolle,
J. Comb. Chem.
2004
,
6
, 623.
182
R. E. Dolle,
J. Comb. Chem.
2005
,
7
, 739.
183
R. E. Dolle, B. L. Bourdonnec, G. A. Morales, K. J. Moriarty, J. M. Salvino,
J. Comb. Chem.
2006
,
8
, 597.
184
R. E. Dolle, B. L. Bourdonnec, A. J. Goodman, G. A. Morales, J. M. Salvino, W. Zhang,
J. Comb. Chem.
2007
,
9
, 855.
185
R. E. Dolle, B. L. Bourdonnec, A. J. Goodman, G. A. Morales, C. J. Thomas, W. Zhang,
J. Comb. Chem.
2008
,
10
, 753.
186
R. E. Dolle, B. L. Bourdonnec, A. J. Goodman, G. A. Morales, C. J. Thomas, W. Zhang,
J. Comb. Chem.
2009
,
11
, 739.
187
R. E. Dolle, B. L. Bourdonnec, K. Worm, G. A. Morales, C. J. Thomas, W. Zhang,
J. Comb. Chem.
2010
,
12
, 765.
188
A. Kamal, K. L. Reddy, V. Devaiah, N. Shankaraiah, M. V. Rao,
Mini Rev. Med. Chem.
2006
,
6
, 71.
189
D. A. Horton, G. T. Bourne, M. L. Smythe,
Chem. Rev.
2003
,
103
, 893.
190
A. Kamal, K. L. Reddy, V. Devaiah, N. Shankaraiah, D. R. Reddy,
Mini Rev. Med. Chem.
2006
,
6
, 53.
191
D. A. Horton, G. T. Bourne, M. L. Smythe,
Mol. Divers.
2000
,
5
, 289.
192
A. M. Boldi,
Curr. Opin. Chem. Biol.
2004
,
8
, 281.
193
T. Guo, D. W. Hobbs,
Assay Drug Dev. Technol.
2003
,
1
, 579.
194
A. Verma, M. Yadav, R. Giridhar, N. Prajapati, A. C. Tripathi, S. K. Saraf,
Comb. Chem. High Throughput Screen.
2013
,
16
, 345.
195
J. A. Ellman,
Acc. Chem. Res.
1996
,
29
, 132.
196
J. P. Nandy, M. Prakesch, S. Khadem, P. T. Reddy, U. Sharma, P. Arya,
Chem. Rev.
2009
,
109
, 1999.
197
S. Bräse,
Privileged Scaffolds in Medicinal Chemistry Design, Synthesis, Evaluation
. Royal Society Chemistry, Cambridge, UK,
2016
.
