128,99 €
A comprehensive book focusing on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation This book focusses on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation. A review of the current nonlinear analysis method for earthquake engineering will be summarized and explained. Additionally, how the force analogy method can be used in nonlinear static analysis will be discussed through several nonlinear static examples. The emphasis of this book is to extend and develop the force analogy method to performing dynamic analysis on structures under earthquake excitations, where the force analogy method is incorporated in the flexural element, axial element, shearing element and so on will be exhibited. Moreover, the geometric nonlinearity into nonlinear dynamic analysis algorithm based on the force analogy method is included. The application of the force analogy method in seismic design for buildings and structural control area is discussed and combined with practical engineering.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 366
Veröffentlichungsjahr: 2014
Cover
Title page
Copyright page
Preface
About the Authors
1 Introduction
1.1 History of the Force Analogy Method
1.2 Applications of the Force Analogy Method
1.3 Background of the Force Analogy Method
References
2 Nonlinear Static Analysis
2.1 Plastic Rotation
2.2 Force Analogy Method for Static Single-Degree-of-Freedom Systems
2.3 Nonlinear Structural Analysis of Moment-Resisting Frames
2.4 Force Analogy Method for Static Multi-Degree-of-Freedom Systems
2.5 Nonlinear Static Examples
2.6 Static Condensation
References
3 Nonlinear Dynamic Analysis
3.1 State Space Method for Linear Dynamic Analysis
3.2 Dynamic Analysis with Material Nonlinearity
3.3 Nonlinear Dynamic Analysis with Static Condensation
3.4 Nonlinear Dynamic Examples
References
4 Flexural Member
4.1 Bending and Shear Behaviors
4.2 Inelastic Mechanisms of Flexural Members
4.3 Nonlinear Static Analysis of Structures with Flexural Members
4.4 Nonlinear Dynamic Analysis of Structures with Flexural Members
References
5 Axial Deformation Member
5.1 Physical Theory Models for Axial Members
5.2 Sliding Hinge Mechanisms
5.3 Force Analogy Method for Static Axial Members
5.4 Force Analogy Method for Cycling Response Analysis of Axial Members
5.5 Application of the Force Analogy Method in Concentrically Braced Frames
References
6 Shear Member
6.1 Physical Theory Models of Shear Members
6.2 Local Plastic Mechanisms in the FAM
6.3 Nonlinear Static Analysis of the Shear Wall Structures
6.4 Nonlinear Dynamic Analysis of RC Frame-Shear Wall Structures
References
7 Geometric Nonlinearity
7.1 Classical Stiffness Matrices with Geometric Nonlinearity
7.2 Stability Functions
7.3 Force Analogy Method with Stability Functions
7.4 Nonlinear Dynamic Analysis Using Stability Functions
7.5 Nonlinear Dynamic Analysis with Static Condensation Using Stability Functions
7.6 Nonlinear Dynamic Examples
References
8 Application of the Force Analogy Method in Modal Superposition
8.1 Nonlinear Static Pushover Analysis in the FAM
8.2 Modal Decomposition in the FAM
8.3 Modal Response Summation
8.4 Nonlinear Modal Superposition Method Example
References
9 Application: Structural Vibration Control
9.1 Passive Control Technique
9.2 Application of the FAM in Active or Semi-Active Structural Control
References
Index
End User License Agreement
Chapter 04
Table 4.1 The parameters of the bending primary curve.
Table 4.2 The parameters of the shear primary curve.
Table 4.3 The parameters of the bending primary curve.
Table 4.4 The parameters of the bending primary curve.
Table 4.5 The parameters of the shear primary curve.
Table 4.6 Numerical results of the RC column subjected to cyclic loadings
Table 4.7 The parameters of the bending primary curves for the columns and beams.
Table 4.8 The parameters of the shear primary curves for the columns.
Chapter 05
Table 5.1 Numerical results of the steel tube under cycling loads.
Chapter 06
Table 6.1 The Parameters of the shear wall structure.
Table 6.2 The numerical Parameters of the RC frame-shear wall structure.
Table 6.3 Numerical results of the shear wall subjected to cyclic loadings.
Chapter 07
Table 7.1 Comparison of geometric nonlinear stiffnesses, periods, and maximum responses.
Chapter 09
Table 9.1 Parameters of the structure.
Table 9.2 Parameters of the structural component.
Table 9.3 the main parameters of the structure.
Chapter 01
Figure 1.1 SDOF system and restoring force model.
Figure 1.2 Complex cyclic behaviors of structural members.
Figure 1.3 The framework for the combination of FAM and control algorithm.
Figure 1.4 Displacement patterns and the corresponding fixed-end forces.
Figure 1.5 One-story one-bay moment-resisting frame: (a) Three degrees of freedom system; (b) Applied forces at the degrees of freedom.
Figure 1.6 Displacement pattern using unit displacement at v1.
Figure 1.7 Displacement pattern using unit displacement at θ2.
Figure 1.8 Displacement pattern using unit displacement at θ3.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
