Verification, Validation, and Testing of Engineered Systems - Avner Engel - E-Book

Verification, Validation, and Testing of Engineered Systems E-Book

Avner Engel

4,7
163,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Systems' Verification Validation and Testing (VVT) are carried out throughout systems' lifetimes. Notably, quality-cost expended on performing VVT activities and correcting system defects consumes about half of the overall engineering cost. Verification, Validation and Testing of Engineered Systems provides a comprehensive compendium of VVT activities and corresponding VVT methods for implementation throughout the entire lifecycle of an engineered system. In addition, the book strives to alleviate the fundamental testing conundrum, namely: What should be tested? How should one test? When should one test? And, when should one stop testing? In other words, how should one select a VVT strategy and how it be optimized? The book is organized in three parts: The first part provides introductory material about systems and VVT concepts. This part presents a comprehensive explanation of the role of VVT in the process of engineered systems (Chapter-1). The second part describes 40 systems' development VVT activities (Chapter-2) and 27 systems' post-development activities (Chapter-3). Corresponding to these activities, this part also describes 17 non-testing systems' VVT methods (Chapter-4) and 33 testing systems' methods (Chapter-5). The third part of the book describes ways to model systems' quality cost, time and risk (Chapter-6), as well as ways to acquire quality data and optimize the VVT strategy in the face of funding, time and other resource limitations as well as different business objectives (Chapter-7). Finally, this part describes the methodology used to validate the quality model along with a case study describing a system's quality improvements (Chapter-8). Fundamentally, this book is written with two categories of audience in mind. The first category is composed of VVT practitioners, including Systems, Test, Production and Maintenance engineers as well as first and second line managers. The second category is composed of students and faculties of Systems, Electrical, Aerospace, Mechanical and Industrial Engineering schools. This book may be fully covered in two to three graduate level semesters; although parts of the book may be covered in one semester. University instructors will most likely use the book to provide engineering students with knowledge about VVT, as well as to give students an introduction to formal modeling and optimization of VVT strategy.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1058

Veröffentlichungsjahr: 2010

Bewertungen
4,7 (18 Bewertungen)
13
5
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Table of Contents

Series page

Title page

Copyright page

Dedication

Preface

ACKNOWLEDGMENTS

Part I: Introduction

Chapter 1: Introduction

1.1 OPENING

1.2 VVT SYSTEMS AND PROCESS

1.3 CANONICAL SYSTEMS VVT PARADIGM

1.4 METHODOLOGY APPLICATION

Part II: VVT Activities and Methods

Chapter 2: System VVT Activities: Development

2.1 STRUCTURE OF CHAPTER

2.2 VVT ACTIVITIES DURING DEFINITION

2.3 VVT ACTIVITIES DURING DESIGN

2.4 VVT ACTIVITIES DURING IMPLEMENTATION

2.5 VVT ACTIVITIES DURING INTEGRATION

2.6 VVT ACTIVITIES DURING QUALIFICATION

Chapter 3: Systems VVT Activities: Post-Development

3.1 STRUCTURE OF CHAPTER

3.2 VVT ACTIVITIES DURING PRODUCTION

3.3 VVT ACTIVITIES DURING USE/MAINTENANCE

3.4 VVT ACTIVITIES DURING DISPOSAL

Chapter 4: System VVT Methods: Non-Testing

4.1 INTRODUCTION

4.2 PREPARE VVT PRODUCTS

4.3 PERFORM VVT ACTIVITIES

4.4 PARTICIPATE IN REVIEWS

Chapter 5: Systems VVT Methods: Testing

5.1 INTRODUCTION

5.2 WHITE BOX TESTING

5.3 BLACK BOX—BASIC TESTING

5.4 BLACK BOX—HIGH-VOLUME TESTING

5.5 BLACK BOX—SPECIAL TESTING

5.6 BLACK BOX—ENVIRONMENT TESTING

5.7 BLACK BOX—PHASE TESTING

Part III: Modeling and Optimizing VVT Process

Chapter 6: Modeling Quality Cost, Time and Risk

6.1 PURPOSE AND BASIC CONCEPTS

6.2 VVT COST AND RISK MODELING

6.3 VVT TIME AND RISK MODELING

6.4 FUZZY VVT COST MODELING

Chapter 7: Obtaining Quality Data and Optimizing VVT Strategy

7.1 SYSTEMS’ QUALITY COSTS IN THE LITERATURE

7.2 OBTAINING SYSTEM QUALITY DATA

7.3 IAI/LAHAV QUALITY DATA—AN ILLUSTRATION

7.4 THE VVT-TOOL

7.5 VVT COST, TIME AND RISK OPTIMIZATION

Chapter 8: Methodology Validation and Examples

8.1 METHODOLOGY VALIDATION USING A PILOT PROJECT

8.2 OPTIMIZING THE VVT STRATEGY

8.3 IDENTIFYING AND AVOIDING SIGNIFICANT RISKS

8.4 IMPROVING SYSTEM QUALITY PROCESS

Appendix A: SysTest Project

A.1 ABOUT SYSTEST

A.2 SYSTEST KEY PRODUCTS

A.3 SYSTEST PILOT PROJECTS

A.4 SYSTEST TEAM

A.5 EC EVALUATION OF SYSTEST PROJECT

Appendix B: Proposed Guide: System Verification, Validation and Testing Master Plan

B.1 BACKGROUND

B.2 CREATING THE VVT-MP

B.3 CHAPTER 1: SYSTEM DESCRIPTION

B.4 CHAPTER 2: INTEGRATED VVT PROGRAM SUMMARY

B.5 CHAPTER 3: SYSTEM VVT

B.6 CHAPTER 4: VVT RESOURCE SUMMARY

Appendix C: List of Acronyms

Index

End User License Agreement

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

Editorial contribution—Dr. Peter Hahn

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Engel, Avner.

Verification, validation, and testing of engineered systems/Avner Engel.

p. cm.—(Wiley series in systems engineering and management)

Includes bibliographical references and index.

ISBN 978-0-470-52751-1 (cloth)

 1. Quality assurance. 2. Quality control. 3. Systems engineering. 4. System failures (Engineering)–Prevention. 5. Testing. I. Title.

TS156.6.E53 2010

658.5′62—dc22

2009045885

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To my parents:

Josef Engel, Lea Engel and Tova Engel

and my revered teachers:

Dr. Itzhak Frank, Professor Jerry Weinberg and Professor Miryam Barad

Preface

Systems testing is carried out one way or another in all development and manufacturing projects, but seldom is this done in a truly organized manner and no book currently available describes the process in a comprehensive and implementable form. Along the same line of thinking, virtually no systems Verification, Validation, and Testing (VVT) research is conducted throughout the academic world. This is especially odd, since some 50–60 percent of a systems development cost is expended on either performing VVT activities or correcting system defects during the development process or during the life of the developed product.

This book attempts to put together a comprehensive compendium of VVT activities and corresponding VVT methods for implementation throughout the entire lifecycle of systems (i.e. Definition, Design, Implementation, Integration, Qualification, Production, Use/Maintenance and Disposal). In addition, the book strives to alleviate the fundamental testing conundrum, namely: What should be tested? How should one test? When should one test? And, when should one stop testing? In other words, how should one select a VVT strategy and how should it be optimized? Although early quality pioneers (e.g., Juran in the 1950s) proposed a conceptual quality cost model, no one proposed a quantitative and credible model which can be used to answer the above questions. This book provides such a model, together with data from a real-life project, which show significant potential savings in either cost, time or both. The book is organized in three parts:

The first part (Chapter 1) provides introductory material about systems and VVT concepts. This part presents a comprehensive explanation of the role of VVT in the process of engineered systems throughout their lifetime and explains the essence of systems VVT and the linkage between VVT and systems development, manufacturing, use/maintenance and retirement.

The second part (Chapters 2–5) is essentially a reference guide, describing typical systems VVT activities which may be conducted during an engineered systems lifetime. A reciprocal and comprehensive set of methods for carrying out these VVT activities is also provided. More specifically, the second part describes 40 systems development VVT activities (Chapter 2) and 27 systems post-development activities (Chapter 3). Corresponding to these activities, this part also describes 17 non-testing systems VVT methods (Chapter 4) and 33 testing systems methods (Chapter-5). In-text citations are provided wherever needed, usually within theoretical sections of the book. In addition, subchapters contain a set of citations for further reading. Readers will undoubtedly be able to absorb and implement some or all of this information in their daily work-life as systems or test engineers.

The third part of the book (Chapters 6–8) describes ways to model systems quality cost, time and risk (Chapter 6), as well as ways to acquire quality data and optimize the VVT strategy in the face of funding, time and other resource limitations and in accordance with different business objectives (Chapter 7). Finally, this part describes the methodology used to validate the quality model along with examples describing a system’s quality improvements (Chapter 8). Readers will be able to learn how to collect and aggregate quality data within their organizations. In addition to becoming familiar with this significant information, readers will be introduced to four Cost, Time and Risk Models. Systems engineers are encouraged to use these models in order to optimize their VVT strategies, thereby realizing as much as ten percent reduction in engineering manpower or schedule in the development of engineered systems. The software is freely available to readers via an Internet site (http://www.adisw.com) in binary form under Beta release conditions.

Fundamentally, this book is written with two categories of audience in mind. The first category is composed of VVT practitioners, including Systems, Test, Production and Maintenance engineers as well as first and second line managers. These people may be employed by development and manufacturing industries (e.g., Aerospace, Automobile, Communication, Healthcare equipment, etc.), by various civilian agencies (e.g. NASA, ESA, etc.) or with the military (e.g., Air force, Navy, Army, etc.). This book may also be used as a supplemental graduate level textbook in courses related to systems VVT. Typical academic readers may be graduate school students or members of Systems, Electrical, Aerospace, Mechanical, and Industrial Engineering faculties. This book may be fully covered in two to three semesters (although parts of the book may be covered in one semester). University instructors will most likely use the book to provide engineering students with knowledge about VVT, as well as to give students an introduction to formal modeling and optimization of VVT strategy.

ACKNOWLEDGMENTS

Many friends and colleagues have contributed generously to the writing of this book. To all of them, I would like to express my sincere gratitude and appreciation. In particular, I wish to thank Dr. Peter Hahn, who has been a tireless and devoted companion in the book-writing project from its inception. He edited the original manuscript and contributed numerous and valuable suggestions to improve the book.

The SysTest project, partially funded by the European Commission (see Appendix A), focused my attention onto systems verification, validation and testing. My appreciation goes to all the consortium members and in particular to professor Eduard Igenbergs of the Technical University of Munich, who provided both a philosophical foundation and ample encouragement, and to Professor Tyson Browning of the Texas Christian University, part of whose scientific writings and words of wisdom are embedded in this book. The Advanced System and Software Engineering Technology (ASSET) group at Israel Aerospace Industries (IAI) was a significant milieu for learning and expanding. My special gratitude goes to ASSET group leader, Dr. Michael Winokur. I am also grateful to Shalom Shachar of the IAI/Lahav Division, who conducted the SysTest pilot project at IAI, helped in collecting field data and became a sounding board and advisor regarding many aspects of the VVT quantitative model. In addition, I am beholden to Michael Garber of Adi Mainly Software (AMS), who developed the VVT-Tool software package which embodies the VVT model.

Several close friends were involved in creating this book. In particular, I would like to mention Avi Egozi and Arie Rokach, who suggested the book project in the first place and provided advice throughout the writing process. Also my sincere appreciation goes to Menachem Cahani (Pampam), who volunteered to illustrate several caricatures in the book. I also am genuinely indebted to Professor Miryam Barad of the Tel-Aviv University, an esteemed teacher who taught me how to conduct scientific research and write about it.

Most of all, my deepest thanks go to my wife, Rachel, and my children, Ofer, Amir, Jonathan and Michael, who encouraged my book efforts with advice, patience and love,

Avner Engel

Tel-Aviv, Israel

Part I

Introduction

Chapter 1

Introduction

1.1 OPENING

This chapter serves as motivation for learning about systems Verification, Validation and Testing (VVT) as well as a map for using the book as a reference source on this complex and multifaceted process. We emphasize here the multitude of reasons for applying VVT. It sets the tone for the subject matter we hope to cover. It gives the reader insight into the attitudes of the author and the care with which the book was prepared. A clear statement is made of the purpose for which the book has been written.

The book is a compendium of facts about systems VVT. In fact, we think little has yet been published that is as comprehensive on this subject. By listing the potential audience for the book, we hope to encourage its wide distribution and to increase among engineers, managers, academicians and students an appreciation of the benefits of rigorously applying VVT to almost every endeavor involving a product or service, be it for purposes commercial, private or public. This chapter contains the following elements:

Opening. This part provides a background, purpose and the intended audience of the book. In addition, it describes its structure and contents as well as the scope of application and some terminology descriptions.

VVT systems and process. This part introduces VVT systems and processes as components of engineered systems. In addition, it describes basic VVT definitions and elaborates on the fundamental VVT dilemmas. Also, this part describes modeling of systems and VVT lifecycle as well as modeling of VVT processes and risks as cost and time drivers.

Canonical systems VVT paradigm. This part introduces the concept of canonical systems VVT paradigm which includes phases of systems’ lifecycle, views of systems and VVT aspects of systems.

Methodology application. This part introduces methodology application including VVT methodology overview, VVT tailoring and typical VVT documentation.

1.1.1 Background

The manufacturing industry used to be concerned with the design, development, production and maintenance of stand-alone products, whether simple or complex. Today, however, manufacturing has broadened its scope to include products, services or solutions that include a variety of components, integrate a large mix of technologies and involve both people and machines. It is this broad range of complex entities that we address in this book. The basic term we use for these complex entities is engineered systems. However, throughout this book, when appropriate, we will freely use terms such as products or services. The term engineered systems is distinguished from systems in the sense that the former is created by engineers who apply science and mathematics to find suitable solutions to problems.

Traditional and high-technology manufacturing industries are responding to the challenge to satisfy consumer needs and ensure competitive and sustainable growth by reducing time to market and customizing products (or expanding product ranges) while producing the required goods in the quantities demanded with the appropriate quality at reduced costs. For instance, in the automobile sector, the lead time for manufacturing a car at the beginning of the 1990s was five to six years, whereas today it is about two to three years and is estimated to be only 18 months in the near future. Therefore, controlling schedules, costs and quality in product deve­lopment, manufacturing and maintenance remains a major challenge for today’s industries. Increases in complexity, decreases in development budgets and shortened time to market for new products, services and solutions are leading developers to search for new ways of improving the quality of what they deliver by improving their technologies, processes, methodologies and tools.

The overall development process is only as strong as its weakest link. A critical and largely ignored link in this process is system VVT, which comprise vital activities and involve processes. A tool of systems engineering, VVT focuses on ensuring that engineered systems are delivered as error free as possible, are functionally sound and meet or exceed the user’s needs. Often VVT is carried out as merely a vehicle for finding and eliminating errors. It can do much more than that. Today, many system developers perform VVT only in the test phase of the project, a late and highly constrained period in the product development cycle. As a result, increases in overall development time and costs associated with product rework often exceed 20% of expanded engineering efforts (Capers, 1996). Admittedly, balancing testing cost and schedule with quality is difficult. However, quality problems discovered later by the user can necessitate expensive repairs and are likely to damage the reputation of the system or, worse, damage the reputation of the system’s developer.

Given the fundamental role of VVT in achieving product quality and reducing waste, this book aims at rectifying two critical current VVT problems, namely, lack of comprehensive system VVT methodology and lack of a practical, quantitative VVT process model for selecting a VVT strategy to optimize testing cost, schedule and economic risk. This book, which to a large measure is based on the European Commission–supported SysTest project, was written in order to rectify these problems.

1.1.2 Purpose

One of the central objectives of this book is the creation of generic VVT methodology. This VVT methodology consists of a selection of VVT activities and methods which can be applied throughout the system lifecycle in different industrial application fields and can be tailored according to the individual project needs.

The VVT methodology delivers generic means for comprehensive cost-effective VVT in the industry. In addition, the objectives of this methodology are as follows:

To cover the entire product lifecycles from the definition to the disposal of the systemTo supply tailoring rules for different industry domains (e. g. electronics/avionics, control systems, automobile, food packaging systems, steel production), development cycles and project typesTo specify activities and methods for VVT on the system level together with their interrelationshipTo define VVT strategies that can be used in a broad variety of industrial applications

1.1.3 Intended Audience

The VVT methodology described in this book is applicable to all regional and industrial sectors. Although system VVT is performed throughout industry, it has not become a topic for research within the international community either in industry or in academia. Therefore, the definition of a generic VVT methodology will provide comprehensive knowledge for many students and practitioners. This book was written for the reader who has a background knowledge of project management, systems engineering and quality assurance. Those who participate in system development will benefit from the material covered in this book. These include:

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!