Advanced Data Analytics Using Python - Sayan Mukhopadhyay - E-Book

Advanced Data Analytics Using Python E-Book

Sayan Mukhopadhyay

0,0
46,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing, and computer vision in the cloud environment.

Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build machine learning and deep learning models using transfer learning. 

Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analyticswith reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application. 

What You'll Learn
  • Build intelligent systems for enterprise
  • Review time series analysis, classifications, regression, and clustering
  • Explore supervised learning, unsupervised learning, reinforcement learning, and transfer learning 
  • Use cloud platforms like GCP and AWS in data analytics
  • Understand Covers design patterns in Python 
Who This Book Is For

Data scientists and software developers interested in the field of data analytics.

Das E-Book können Sie in einer beliebigen App lesen, die das folgende Format unterstützt:

PDF

Veröffentlichungsjahr: 2022

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.