Applied Bayesian Modelling - Peter Congdon - E-Book

Applied Bayesian Modelling E-Book

Peter Congdon

0,0
68,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 887

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

WILEY SERIES IN PROBABILITY AND STATISTICS

Copyright

Preface

Chapter 1: Bayesian methods and Bayesian estimation

1.1 Introduction

1.2 MCMC techniques: The Metropolis–Hastings algorithm

1.3 Software for MCMC: BUGS, JAGS and R-INLA

1.4 Monitoring MCMC chains and assessing convergence

1.5 Model assessment

References

Chapter 2: Hierarchical models for related units

2.1 Introduction: Smoothing to the hyper population

2.2 Approaches to model assessment: Penalised fit criteria, marginal likelihood and predictive methods

2.3 Ensemble estimates: Poisson–gamma and Beta-binomial hierarchical models

2.4 Hierarchical smoothing methods for continuous data

2.5 Discrete mixtures and dirichlet processes

2.6 General additive and histogram smoothing priors

Exercises

Notes

References

Chapter 3: Regression techniques

3.1 Introduction: Bayesian regression

3.2 Normal linear regression

3.3 Simple generalized linear models: Binomial, binary and Poisson regression

3.4 Augmented data regression

3.5 Predictor subset choice

3.6 Multinomial, nested and ordinal regression

Exercises

Notes

References

Chapter 4: More advanced regression techniques

4.1 Introduction

4.2 Departures from linear model assumptions and robust alternatives

4.3 Regression for overdispersed discrete outcomes

4.4 Link selection

4.5 Discrete mixture regressions for regression and outlier status

4.6 Modelling non-linear regression effects

4.7 Quantile regression

Exercises

Notes

References

Chapter 5: Meta-analysis and multilevel models

5.1 Introduction

5.2 Meta-analysis: Bayesian evidence synthesis

5.3 Multilevel models: Univariate continuous outcomes

5.4 Multilevel discrete responses

5.5 Modelling heteroscedasticity

5.6 Multilevel data on multivariate indices

Exercises

Notes

References

Chapter 6: Models for time series

6.1 Introduction

6.2 Autoregressive and moving average models

6.3 Discrete outcomes

6.4 Dynamic linear and general linear models

6.5 Stochastic variances and stochastic volatility

6.6 Modelling structural shifts

Exercises

Notes

References

Chapter 7: Analysis of panel data

7.1 Introduction

7.2 Hierarchical longitudinal models for metric data

7.3 Normal linear panel models and normal linear growth curves

7.4 Longitudinal discrete data: Binary, categorical and Poisson panel data

7.5 Random effects selection

7.6 Missing data in longitudinal studies

Exercises

Notes

References

Chapter 8: Models for spatial outcomes and geographical association

8.1 Introduction

8.2 Spatial regressions and simultaneous dependence

8.3 Conditional prior models

8.4 Spatial covariation and interpolation in continuous space

8.5 Spatial heterogeneity and spatially varying coefficient priors

8.6 Spatio-temporal models

8.7 Clustering in relation to known centres

Exercises

Notes

References

Chapter 9: Latent variable and structural equation models

9.1 Introduction

9.2 Normal linear structural equation models

9.3 Dynamic factor models, panel data factor models and spatial factor models

9.4 Latent trait and latent class analysis for discrete outcomes

9.5 Latent trait models for multilevel data

9.6 Structural equation models for missing data

Exercises

Notes

References

Chapter 10: Survival and event history models

10.1 Introduction

10.2 Continuous time functions for survival

10.3 Accelerated hazards

10.4 Discrete time approximations

10.5 Accounting for frailty in event history and survival models

10.6 Further applications of frailty models

10.7 Competing risks

Exercises

References

Index

WILEY SERIES IN PROBABILITY AND STATISTICS

End User License Agreement

Pages

xi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

234

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

344

343

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

431

432

433

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

439

439

439

439

439

Guide

Table of Contents

List of Illustrations

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 8.1

Figure 8.2

Figure 10.1

List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 4.1

Table 4.2

Table 6.1

Table 6.2

Table 7.1

Table 7.2

Table 9.1

Table 9.2

Table 9.3

Table 9.4

Table 9.5

Table 9.6

Table 10.1

Table 10.2

Applied Bayesian Modelling

Second Edition

 

Peter Congdon

Centre for Statistics and Department of Geography, Queen Mary, University of London, UK

 

 

 

 

 

 

WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice,

Geof H. Givens, Harvey Goldstein, Geert Molenberghs, David W. Scott,Adrian F. M. Smith, Ruey S. Tsay, Sanford Weisberg

Editors Emeriti: J. Stuart Hunter, Iain M. Johnstone, Joseph B. Kadane,Jozef L. Teugels

A complete list of the titles in this series appears at the end of this volume.

This edition first published 2014

© 2014 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Congdon, P.

Applied Bayesian modelling / Peter Congdon.— Second edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-119-95151-3 (cloth)

1. Bayesian statistical decision theory. 2. Mathematical statistics. I. Title.

QA279.5.C649 2014

519.5′42– dc23

2014004862

A catalogue record for this book is available from the British Library.

ISBN: 978-1-119-95151-3

Preface

My gratitude is due to Wiley for proposing a revised edition of Applied Bayesian Modelling, first published in 2003. Much has changed since then for those seeking to apply Bayesian principles or to exploit the growing advantages of Bayesian estimation.

The central program used throughout the text in worked examples is BUGS, though R packages such as R-INLA, R2BayesX and MCMCpack are also demonstrated. Reference throughout the text to BUGS can be taken to refer both to WinBUGS and the ongoing OpenBUGS program, on which future development will concentrate (see http://www.openbugs.info/w/). There is a good deal of continuity between the final WinBUGS14 version and OpenBUGS (for details of differences see http://www.openbugs.info/w.cgi/OpenVsWin), though OpenBUGS has a wider range of sampling choices, distributions and functions. BUGS code can also be simply adapted to JAGS applications and the JAGS interfaces with R such as rjags.

Although R interfaces to BUGS or encapsulating the program are now widely used, the BUGS programming language itself remains a central aspect. Direct experience in WinBUGS or OpenBUGS programming is important as a preliminary to using R Interfaces such as BRUGS and rjags.

For learning Bayesian methods, especially if the main goal is data analysis per se, BUGS has advantages both practical and pedagogical. It can be seen as a half-way house between menu driven Bayesian computing (still not really established in any major computing package, though SAS has growing Bayesian capabilities) on the one hand, and full development of independent code, including sampling algorithms, on the other.

Many thanks are due to the following for comments on chapters or programming advice: Sid Chib, Cathy Chen, Brajendra Sutradhar and Thomas Kneib.

Please send comments or questions to me at [email protected].

Peter Congdon, London

Chapter 1Bayesian methods and Bayesian estimation

1.1 Introduction

Bayesian analysis of data in the health, social and physical sciences has been greatly facilitated in the last two decades by improved scope for estimation via iterative sampling methods. Recent overviews are provided by Brooks et al. (2011), Hamelryck et al. (2012), and Damien et al. (2013). Since the first edition of this book in 2003, the major changes in Bayesian technology relevant to practical data analysis have arguably been in distinct new approaches to estimation, such as the INLA method, and in a much extended range of computer packages, especially in R, for applying Bayesian techniques (e.g. Martin and Quinn, 2006; Albert, 2007; Statisticat LLC, 2013).

Among the benefits of the Bayesian approach and of sampling methods of Bayesian estimation (Gelfand and Smith, 1990; Geyer, 2011) are a more natural interpretation of parameter uncertainty (e.g. through credible intervals) (Lu et al., 2012), and the ease with which the full parameter density (possibly skew or multi-modal) may be estimated. By contrast, frequentist estimates may rely on normality approximations based on large sample asymptotics (Bayarri and Berger, 2004). Unlike classical techniques, the Bayesian method allows model comparison across non-nested alternatives, and recent sampling estimation developments have facilitated new methods of model choice (e.g. Barbieri and Berger, 2004; Chib and Jeliazkov, 2005). The flexibility of Bayesian sampling estimation extends to derived ‘structural’ parameters combining model parameters and possibly data, and with substantive meaning in application areas, which under classical methods might require the delta technique. For example, Parent and Rivot (2012) refer to ‘management parameters’ derived from hierarchical ecological models.

New estimation methods also assist in the application of hierarchical models to represent latent process variables, which act to borrow strength in estimation across related units and outcomes (Wikle, 2003; Clark and Gelfand, 2006). Letting and denote joint and conditional densities respectively, the paradigm for a hierarchical model specifies

1.1

based on an assumption that observations are imperfect realisations of an underlying process and that units are exchangeable. Usually the observations are considered conditionally independent given the process and parameters.

Such techniques play a major role in applications such as spatial disease patterns, small domain estimation for survey outcomes (Ghosh and Rao, 1994), meta-analysis across several studies (Sutton and Abrams, 2001), educational and psychological testing (Sahu, 2002; Shiffrin et al., 2008) and performance comparisons (e.g. Racz and Sedransk, 2010; Ding et al., 2013).

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!