Atomically Precise Metal Clusters - Shuang-Quan Zang - E-Book

Atomically Precise Metal Clusters E-Book

Shuang-Quan Zang

0,0
133,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

A timely and comprehensive book that summarizes the recent progress in the surface modification and self-assembly of metal nanoclusters.

Das E-Book Atomically Precise Metal Clusters wird angeboten von Wiley-VCH GmbH und wurde mit folgenden Begriffen kategorisiert:
Anorganische Chemie, Chemie, Chemistry, Dünne Schichten, Oberflächen u. Grenzflächen, Inorganic Chemistry, Materials Science, Materialwissenschaften, Oberflächenchemie, Supramolecular Chemistry, Supramolekulare Chemie, Thin Films, Surfaces & Interfaces

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 609

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Atomically Precise Metal Clusters

Surface Engineering and Hierarchical Assembly

Shuang‐Quan Zang

 

 

 

 

 

 

 

 

Author

Prof. Shuang‐Quan Zang

Zhengzhou University

100 Science Avenue

Zhengzhou 450001

China

Cover Image: © Ostap Hirniak/Shutterstock

All books published by WILEY‐VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details, or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing‐in‐Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2024 Wiley‐VCH GmbH, Boschstraße 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photo printing, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN:    978‐3‐527‐35210‐4

ePDF ISBN:      978‐3‐527‐84207‐0

ePub ISBN:   978‐3‐527‐84208‐7

oBook ISBN: 978‐3‐527‐84209‐4

Preface

Chemists have long been motivated to create atomically precise metal nanoclusters as model molecules to address fundamental issues and investigate the structure–property relationship of conventional imprecise metal nanoparticles. A hot topic in metal cluster science is tailoring their structure and property through surface engineering and supramolecular assembly, to access desired functions in catalysis, optics, and biomedicine. Given the breadth of the book, I reviewed various types of atomically precise nanoclusters. Due to space limitations, we must apologize to some colleagues for missing their excellent work, which could not be included in this book.

This book comprises 10 chapters, covering ligand engineering and assembly of coinage metal nanoclusters (Chapters 1–3), metal‐oxo clusters (Chapters 4 and 10), metal chalcogenide clusters (Chapters 5–7), noble metal clusters (Chapter 9), and the semi‐conductive Indium phosphide cluster (Chapter 8). Atomic level control in the synthesis, new types of structures, and the physical/chemical properties of nanoclusters are illustrated in various chapters. We expect this book to be suitable for graduate and undergraduate students, researchers, and industry practitioners.

Overall, the controlled modification and assembly of metal nanoclusters is expected to have a major impact on future nanoscience research and other areas. In future research, distinctive metal cluster‐based function materials with precise structures will surely bring exciting opportunities in both fundamental research and practical applications.

September 2023

Shuang‐Quan ZangZhengzhou, China

Abbreviations

μ,μ

‐obtt

benzene‐1,2,3,4‐tetrathiolato

μ,μ

‐pbtt

benzene‐1,2,4,5‐tetrathiolato

μ

‐pdt

propanedithiolate

σ

electrical conductivity

[−N(CH

3

)

3

]

+

quaternary ammonium salt

2D

two‐dimensional

3‐cpmt

(3‐cyanophenyl)methanethiolate

3D

three‐dimensional

4‐cpmt

(4‐cyanophenyl)methanethiolate

4‐FTP

4‐fluorothiophenol

4‐PyET

–SCH

2

CH

2

Py

BDPP

2,4‐bis‐(diphenylphosphino)pentane

BDT

3‐benzenedithiol

bdt

benzene‐1,2‐dithiloate

bdtH2

1,4‐benzenedithiolate

BINAS

1,1′‐binaphthyl‐2,2′‐dithiol

bipy

2,2′‐bipyridine

BNSs

branched nanostructures

bpa

1,2‐bis(4‐pyridyl)ethane

bpe

1,2‐bis(4‐pyridyl)ethylene

BPEA

bis(4‐pyridyl)ethane

BPHF@CB[6]

N

,

N

′‐hexamethylene‐bis(pyrazinyl hexafluorophosphate)@cucubit[6]urils

bpp

bis(4‐pyridyl)propane

bpy

4,4′‐bipyridine

bpy‐CH

3

3‐methyl‐4,4′‐bipyridine

bpy‐F

3‐fluorine‐4,4′‐bipyridine

bpym

2,2′‐bipyrimidine

bpy‐NH

2

3‐amino‐4,4′‐bipyridine

CA

copper azide

CB

conduction band

CB

cucurbit[

n

]uril

CCSCs

cadmium chalcogenide supertetrahedral clusters

CD

carbon point

CD

cyclodextrins

CdS/Se

cadmium chalcogenide

CEES

2‐chloroethyl ethyl sulfide

CIE

Internationale de l’Éclairage coordinates

CIEE

crystal‐induced emission enhancement

Cl2bdt

3,6‐dichlorobenzene‐1,2‐dithiolate

CLs

chromophore ligands

CMF

capped metal‐chalcogenide frameworks

CN

cyanide

CNTs

carbon nanotubes

CO

carbon monoxide

COD

1,5‐cyclooctadiene

CPL

circularly polarized luminescence

CPPP

2,5‐bis(4‐cyanophenyl)‐1,4‐bis(4‐(pyridine‐4‐yl)‐phenyl)‐1,4‐dihydropyrrolo[3,2‐

b

]pyrrole

CPs

coordination polymers

CR

charge recombination

CR

croconaine

CS

charge separation

CSSPAAC

cluster‐surface strain‐promoted alkyne‐azide cycloaddition

Cu

18

PW

12

[Cu

18

(trz)

12

Cl

3

(H

2

O)

2

][PW

12

O

40

]

Cu

6

PW

12

[Cu

I

2

Cu

II

4

(trz)

8

Cl

2

][PW

12

O

40

]

CuOx

copper oxide

CV

cyclic voltammograms

DAniBp

1,3‐bis(

para

‐methoxyphenylbenzamidinate)propane

DAPTA

3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]‐nonane

DarBp

1,3‐bis(arylbenzamidinate)propane

DB18C6

dibenzo‐18‐crown‐6

dba

dibenzylideneacetone

dcbdt

1,4‐dicarboxylbenzene‐2,3‐dithio‐late

DCM

dichloromethane

DCP

5,15‐bis(4‐carboxylphenyl)‐15,20‐bistolyl(porphyrinato)zinc

DDS

drug delivery system

DFBT

3,4‐difluoro‐benzenethiol

DFT

density functional theory

DH4H

double helical 4H

DMABN

4(dimethylamino)benzonitrile

DMAc

dimethylacetamide

DMBDT

2,5‐dimethyl‐1,4‐benzenedithiol

DMBTH

dimethylthiophenol

DMET

cis

‐1,2‐dicarbomethoxyethylene dithiolate

DMF

N

,

N

‐dimethylformamide

DMSO

dimethyl sulfoxide

dpbz

1,4‐bis(4‐pyridyl)benzene

dpmp

bis(diphenyl‐phosphanylmethyl)phenylphosphane

DPPE

1,2‐bis(diphenylphosphino)ethane

DPPM

bis(diphenylphosphino)methane

DPPP

1,3‐bis(diphenyphosphino)propane

dppy

diphenylphoshpino‐2‐pyridine

dpz

di‐pyridin‐4‐yl‐diazene

DSC

differential scanning calorimetry

D

t

BuPhBp

1,3‐bis(

para

tert

‐butylphenylbenzamidinate)propane

dtc

di‐

n

‐propyldithiocarbamate

DTolBp

1,3‐bis(

para

‐tolylbenzamidinate)propane

E

a

activation energy

ECE

electrochemical, chemical, and electrochemical

EE

electrochemical and electrochemical

EPG

edge plane graphite

ESI‐MS

electrospray ionization mass spectrometry

Et

3

N

triethylamine

EY

2−

Eosin Y

FA

formic acid

Fc

ferrocene

FcOCCl

ferrocenyl formy chloride

FDTR

frequency‐domain thermoreflectance

FE CO

Faraday efficiency

Fl

Fluorescence

FTIR

Fourier transform infrared

FTO

fluorine‐doped tin oxide

FWHM

full‐width half maximum

G

conductance

GCA

gold cluster assembly

GCAM

gold cluster‐assembled materials

GPC

gel permeation chromatography

GSH

glutathione

H

2

AcbE

5‐acetyl‐barbituric‐4

N

‐ethyl thiosemicarbazone

H

2

AcbM

5‐acetyl‐barbituric‐4

N

‐methyl thiosemicarbazone

H

2

TauPDI

N

,

N

′‐di(ethanesulfonic acid)‐3,4,9,10‐perylene tetracarboxylic diimide

hcp

hexagonal closest packed

HERs

hydrogen evolution reactions

HHe

hexanoic acid

HMy

myristic acid

HRESI MS

high‐resolution electrospray ionization mass spectrometry

HSi(mtMe)

3

tris(methimazolyl)silanide

ICT

intra‐dye molecular charge transfer

ILs

ionic liquids

In(OAc)

3

indium acetate

InMe

3

trimethylindium

InP

indium phosphide

IPr

C

3

N

2

H

2

(C

6

H

3

i

Pr

2

)

2

iptt

4‐isopropylthiazolidine‐2‐thione

LA

α‐lipoic acid

LEET

lowest energy excitonic transition

LEIST

ligand‐exchange‐induced size/structure transformation

LMCT

ligand‐to‐metal charge transfer

LnOCs

lanthanide oxo clusters

LOD

limit of detection

LR

(1R,2R,N1E,N2E)‐N1,N2‐bis(pyridin‐3‐yl‐methylene)cyclohexane‐1,2‐diamine

M

M bonds

metal‐metal bonds

MA

myristate

MALDI‐TOF

matrix‐assisted laser desorption ionization time‐of‐flight

MB

methylene blue

mcbdt

benzene‐1,2‐dithiol‐3‐carboxylic acid

MCCs

metal carbonyl clusters

MCM‐41

mesoporous molecular sieves

MCP

5‐(4‐carboxylphenyl)‐10,15,20‐tristolyl(porphyrinato)zinc

mdppz

(2‐(3‐methylpyrazinyl)‐diphenylphosphine)

MHA

S–(CH

2

)

5

COO

MNBA

5‐mercapto‐2‐nitrobenzoic acid

MNCs

metal nanoclusters

MOCs

metal oxo clusters

MOFs

metal‐organic frameworks

MS

mass spectrometry

MSCs

magic‐sized clusters

mtc

di‐

n

‐propylmonothiorbamate

Na

2

CF351

4,4′‐bis(2‐sulfonatostyryl)biphenyl disodium salt

NAH

1,8‐naphthalic anhydride

NCs

nanoclusters

NHCs

N

‐heterocyclic carbenes

Ni

6

XW

9

(H

2

O)

6

[Ni

6

3

‐OH)

3

(H

2

O)

6

L

3

(B‐α‐XW

9

O

34

)]

NIR

near‐infrared

NMI

naphthalene monoimide

NMP

N

‐methyl‐2‐pyrrolidone

NMR

nuclear magnetic resonance

NPs

nanoparticles

NSs

nanostructures

NYMT

naphthalen‐2‐ylmethanethiol

ODE

octadecene

ODPA

octadecylphosphonate acid

odt

2‐oxa‐1,3‐dithiolate

OLA

oleylamine

P(TMS)

3

tris(trimethylsilyl)phosphine

PAA

poly(acrylic acid)

PAGE

polyacrylamide gel electrophoresis

p‐

BBT

parabromobenzenethiol

PCCs

Pt/Pd carbonyl clusters

PCET

proton‐coupled electron transfer reactions

PDF

pair distribution function

PET

SCH

2

CH

2

Ph

PEt

2

phen

diethyl(9‐ethynylphenanthrene)‐phosphine

Ph

phosphorescence

PhSH

benzenethiol

PL

photoluminescence

PLQY

PL quantum yield

p

‐MBA

para‐mecaptobenzoic acid

PMNTs

POMOF/SWNT nanocomposites

PMo

12

(NH

4

)

3

[PMo

12

O

40

]

PMOs

periodic mesoporous organosilicas

POMs

polyoxometalates

POPs

polyoxopalladates

POSS

octamethylsilsesquioxanes

POSSs

polyhedral oligomeric silsesquioxanes

POTs

polyoxotungstates

PPhpy

2

bis(2‐pyridyl)phenylphosphine

PS

photosensitizers

pt

4‐phenylthiazolidine‐2‐thione

PTA

1,3,5‐triaza‐7‐phosphaadamantane

py

pyrazine

py

pyridyl

QDs

quantum dots

QY

quantum yield

R

2

PO

diorganophosphinoyl ligand

RB

2−

rose bengal

RhB

rhodamine B

R‐L, SL

R

/

S

tert

‐butyl‐3‐mercaptopyrrolidine‐1‐carboxylate

RT

room temperature

S3dtc

8,9,12‐trimercapto‐1,2‐closo‐carborane

SACs

superatomic crystals

SAdm

1‐adamantanethiol

SALE

solvent‐assisted linker exchange

SAXRD

small‐angle X‐ray diffraction

SAXS

small‐angle X‐ray scattering

SBB

supermolecular building block

SBu

1‐butanethiolate

SBU

secondary building unit

SC NCs

semiconductor nanocrystals

SCAMs

silver cluster‐assembled framework materials

SCC‐MOFs

silver cluster‐based metal–organic frameworks

SCIF

superatom complex inorganic framework

SCXRD

single‐crystal X‐ray diffraction

SED

sacrificial electron donor

SEPs

surfactant‐encapsulated POMs

SEt

ethanethiolate

SSPs

single‐source precursors

TBA

tetra‐

n‐

butylammonium

TCNE

tetracyanoethylene

TCPBP

9,18,27,36‐tetrakis[

meso

‐(4‐carboxyphenyl)]‐tetrabenzoporphyrinatozinc

TCPP

tris(4‐chlorophenyl)phosphine

TDDFT

time‐dependent density functional theory

tdt

thiadithiolate

TEG

triethylene glycol

terpy

2,2′:6′,2″‐terpyridine

TFPP

tris(4‐fluorophenyl)phosphine

TGA

thermogravimetric analysis

THF

tetrahydrofuran

TiOCs

titanium oxo clusters

TMA

tetramethylammonium

TMBDT

2,3,5,6‐tetramethyl‐1,4‐benzenedithiol

TMDPy

trimethylenedipyridine

TMEDA

tetramethylethylenediamine

TMS

tetramethylene sulfone

TOF

turnover frequency

TOP

trioctylphosphine

TPOM

tetrakis(4‐pyridyloxymethylene)methane

TPP

triphenylphosphine

TPPA

tris(4‐pyridylphenyl)amine

TPPE

1,1,2,2‐tetrakis(4‐(pyridine‐4‐yl)phenyl)‐ethene) and TPyP (5,10,15,20‐tetra(4‐pyridyl)porphyrin

TPyP‐H

2

5,10,15,20‐tetra(4‐pyridyl)porphyrin

trz

triazole

TTP

tri(ptolyl)phosphine

UV

ultraviolet

VB

valence band

vdWs

van der Waals

VG

voltage

VOCs

volatile organic compounds

VSD

source‐drain voltage

WLED

white light‐emitting diode

XAFS

X‐ray absorption fine structure

XRD

X‐ray diffraction

Xyl

2,6‐dimethylphenyl

ZrOCs

Zr oxo clusters