Carbohydrate Nanotechnology -  - E-Book

Carbohydrate Nanotechnology E-Book

0,0
153,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Introducing the emerging field carbohydrate nanostructures, this book will be a unique resource for interested researchers to learn a range of methods of applying the field to their own work. Greater access, as well as greater collaboration, to this new interdisciplinary field is intended for both synthetic carbohydrate chemists and researchers in nanoscience related fields. It covers: * the main types of nanostructures presently under investigation for modification by carbohydrates, including nanoparticles, nanorods, magnetic particles, dendrimers, nanoporous, and surface confined structures * overview and introduction to the field of carbohydrate nanotechnology, and especially its applications to its biological systems * Provides a unique resource for researchers to learn about the techniques used to characterize the physical and biological properties of carbohydrate-modified nanostructures

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 899

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

COVER

TITLE PAGE

CONTRIBUTORS

PREFACE

1 CARBOHYDRATE-PRESENTING SELF-ASSEMBLED MONOLAYERS: PREPARATION, ANALYSIS, AND APPLICATIONS IN MICROBIOLOGY

1.1 INTRODUCTION

1.2 PREPARATION OF SAMs CONTAINING CARBOHYDRATES

1.3 PREPARATION OF GLYCOSURFACES VIA A SECONDARY REACTION ON SAMs

1.4 CHARACTERIZATION OF GLYCOSURFACES

1.5 APPLICATION OF GLYCOSURFACES IN MICROBIOLOGY

1.6 OUTLOOK

ACKNOWLEDGMENTS

REFERENCES

2 PLASMONIC METHODS FOR THE STUDY OF CARBOHYDRATE INTERACTIONS

2.1 INTRODUCTION

2.2 PHYSICS OF SPR

2.3 SENSOR SURFACE AND IMMOBILIZATION CHEMISTRY

2.4 CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

3 CARBOHYDRATE-MODIFIED GOLD NANOPARTICLES

3.1 INTRODUCTION

3.2 TUNABLE NANOSCALE PROPERTIES OF GOLD NANOPARTICLES

3.3 METHODS FOR ASSEMBLY OF GLYCONANOPARTICLES

3.4 DIRECT COUPLING OF CARBOHYDRATES ON REACTIVE NANOPARTICLE SURFACES

3.5 APPLICATION OF CARBOHYDRATE-MODIFIED GOLD NANOPARTICLES

3.6 CONCLUSION

REFERENCES

4 QUANTUM DOT GLYCOCONJUGATES

4.1 INTRODUCTION

4.2 SYNTHESIS OF QDs

4.3 INTERFACIAL CHEMISTRY AND BIOCONJUGATION

4.4 CARBOHYDRATES

4.5 FLUORESCENCE SPECTROSCOPY OF QDs WITH CARBOHYDRATES

4.6 ELECTROCHEMILUMINESCENCE OF QDs WITH CARBOHYDRATES

4.7 ELECTROCHEMISTRY OF QDs WITH CARBOHYDRATES

4.8 CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

5 CONJUGATION OF GLYCANS WITH CARBON NANOSTRUCTURES

5.1 CARBON NANOMATERIALS

5.2 CHEMISTRY

5.3 GLYCOCONJUGATES

5.4 CONCLUSION AND OUTLOOK

REFERENCES

6 SYNTHESIS OF GLYCOPOLYMERS AND RECENT DEVELOPMENTS

6.1 INTRODUCTION

6.2 SYNTHESIS OF GLYCOPOLYMERS

6.3 CONCLUSION

ACKNOWLEDGMENT

REFERENCES

7 GLYCOCLUSTERS AND THEIR APPLICATIONS AS ANTI-INFECTIVE AGENTS, VACCINES, AND TARGETED DRUG DELIVERY SYSTEMS

7.1 INTRODUCTION

7.2 INHIBITORS OF BACTERIAL AND VIRAL ADHESION

7.3 CARBOHYDRATE CLUSTERS AS SYNTHETIC VACCINES

7.4 CARBOHYDRATE CLUSTERS AS DRUG DELIVERY SYSTEMS

ACKNOWLEDGMENT

REFERENCES

8 GLYCO-FUNCTIONALIZED LIPOSOMES

8.1 INTRODUCTION

8.2 PREPARATION OF GLYCO-FUNCTIONALIZED LIPOSOMES

8.3 CHARACTERIZATION AND EVALUATION OF GLYCO-FUNCTIONALIZED LIPOSOMES

8.4 BIOMEDICAL APPLICATIONS OF GLYCO-FUNCTIONALIZED LIPOSOMES

8.5 SUMMARY

REFERENCES

9 GLYCANS IN MESOPOROUS AND NANOPOROUS MATERIALS

9.1 INTRODUCTION

9.2 POROUS MATERIAL CHARACTERISTICS

9.3 METHODS USEFUL FOR CHARACTERIZING POROUS MATERIALS

9.4 GLYCOPROTEIN ENRICHMENT

9.5 MESOPOROUS SILICA MATERIALS

9.6 POROUS ALUMINA AND POROUS TITANIA

9.7 MESOPOROUS CARBON

9.8 POROUS POLYMER MONOLITHS

9.9 NANOPOROUS GOLD

9.10 FUTURE

REFERENCES

10 APPLICATIONS OF NANOTECHNOLOGY IN ARRAY-BASED CARBOHYDRATE ANALYSIS AND PROFILING

10.1 INTRODUCTION

10.2 APPLICATIONS OF NANOTECHNOLOGY FOR GLYCOMIC ARRAYS

10.3 WHEREVER MICROARRAYS AND NANOTECHNOLOGY MEET, THERE WILL BE PROGRESS

REFERENCES

11 SCANNING PROBE MICROSCOPY FOR THE STUDY OF INTERACTIONS INVOLVING GLYCOPROTEINS AND CARBOHYDRATES

11.1 INTRODUCTION

11.2 FUNDAMENTAL ELEMENTS OF THE ATOMIC FORCE MICROSCOPE

11.3 VISUALIZATION AND NANOSCALE IMAGING OF CARBOHYDRATE DISTRIBUTION IN SAMS PREPARED ON GOLD VIA NATURAL ASSEMBLY OR NANOFABRICATION APPROACHES

11.4 PROBING SPECIFIC LECTIN–CARBOHYDRATE INTERACTIONS USING FORCE MEASUREMENT

11.5 PERSPECTIVES

11.6 CONCLUSIONS

REFERENCES

12 SIALIC ACID-MODIFIED NANOPARTICLES FOR β-AMYLOID STUDIES

12.1 INTRODUCTION

12.2 CARBOHYDRATES PLAY IMPORTANT ROLES IN Aβ AGGREGATION

12.3 NANOTECHNOLOGY IN Aβ RESEARCH

12.4 SIALIC ACID-FUNCTIONALIZED NANOPARTICLES FOR Aβ STUDIES

12.5 CONCLUSION AND FUTURE OUTLOOK

REFERENCES

13 CARBOHYDRATE NANOTECHNOLOGY AND ITS APPLICATIONS FOR THE TREATMENT OF CANCER

13.1 INTRODUCTION

13.2 CANCER BIOLOGY AND CONSIDERATIONS FOR EFFECTIVE NANOTHERAPY

13.3 NANOTECHNOLOGY FOR CANCER THERAPY

13.4 SUGARS, CANCER PROGRESSION, AND METASTASIS

13.5 GLYCONANOTECHNOLOGY AND CANCER

13.6 CONCLUSIONS AND OUTLOOK

REFERENCES

14 CARBOHYDRATE NANOTECHNOLOGY APPLIED TO VACCINE DEVELOPMENT

14.1 INTRODUCTION

14.2 GLYCOPOLYMERS IN VACCINE DEVELOPMENT

14.3 GNPs IN VACCINE DEVELOPMENT

14.4 CONCLUSIONS AND OUTLOOK

REFERENCES

15 CARBOHYDRATE NANOTECHNOLOGY AND ITS APPLICATION TO BIOSENSOR DEVELOPMENT

15.1 GLYCOMICS

15.2 SELF-ASSEMBLED MONOLAYERS (SAMs):

MODIFICATION OF INTERFACES AT NANOSCALE

15.3 BIOCONJUGATION TECHNIQUES FOR GLYCAN IMMOBILIZATION

15.4 LABEL-FREE TRANSDUCING PLATFORMS

15.5 CONSTRUCTION OF GLYCAN BIOSENSORS

15.6 APPLICATION OF GLYCAN BIOSENSORS

15.7 CONCLUSIONS

ACKNOWLEDGMENT

REFERENCES

16 NANOTOXICOLOGY ASPECTS OF CARBOHYDRATE NANOSTRUCTURES

16.1 TOXICOLOGY OF NANOMATERIALS

16.2 CYTOTOXICITY OF CARBOHYDRATE-MODIFIED NANOMATERIALS

16.3 TOXICITY-RELATED APPLICATION OF CARBOHYDRATE NANOMATERIALS

REFERENCES

INDEX

END USER LICENSE AGREEMENT

List of Tables

Chapter 01

TABLE 1.1 Approaches Used for the Direct Preparation of Carbohydrate-Presenting SAMs

TABLE 1.2 Immobilization of unmodified carbohydrates on surfaces with different end group terminations

TABLE 1.3 Immobilization of Synthetic Carbohydrates Derivatives on Surfaces with Different End Group Terminations

TABLE 1.4 Methods of Noncovalent Immobilization of Carbohydrates on Surfaces

Chapter 12

TABLE 12.1 Equilibrium Dissociation Constants of Aβ Binding to Different Generations of Dendrimers with Sialic Acid Modification

Chapter 13

TABLE 13.1 Nanoscale Delivery Systems Used in the Clinic

Chapter 15

TABLE 15.1 Examples of Different Functional Groups Involved in Glycan Activation/Immobilization

Chapter 16

TABLE 16.1 Major forces that regulate interactions between nanomaterials and biological systems

TABLE 16.2 NM Effects as the Basis for Pathophysiology and Toxicity

TABLE 16.3 Mechanisms of Nanomaterial Cytotoxicity and Potentially Useful Safe Design Features

TABLE 16.4 The Assessment of Blood Compatibility of Chitosan-Based Systems

List of Illustrations

Chapter 01

FIGURE 1.1 Mannose derivatives containing disulfides: (a) disulfide that can form multidentate binding on gold and (b) disulfide that results in monodentate binding on gold.

FIGURE 1.2 Immobilization of lactose as

p

-vinylbenzyllactonoamide on silicon.

FIGURE 1.3 Photochemical reactions used to immobilize unmodified carbohydrates on surfaces with photoactive end groups: (a) phthalimide, (b) benzophenone, and (c) perfluoro-phenylazide.

FIGURE 1.4 Chemical process for preparation of 3D aminooxy- and hydrazide functionalized glass slides.

FIGURE 1.5 Schematic representation of the self-assembled multicomponent system for the investigation of biomolecular binding.

FIGURE 1.6 Schematic representation of the carbohydrate immobilization using the noncovalent interaction between NeutrAvidin and biotin.

FIGURE 1.7 Main analysis techniques used to characterize glycosurfaces.

FIGURE 1.8 Schematic representation of direct

E. coli

detection and Con A-mediated

E. coli

detection.

FIGURE 1.9 Adhesion of fluorescent bacteria to the different stages of the SAM during the ‘dual click’ approach. The GFP-transformed

E. coli

bacteria (pPKL1162) enable a fast, direct fluorescence readout to investigate bacterial adhesion on surfaces. The native gold surface (I) was used as reference in each of the other experiments. As can be seen in the epifluorescence micrographs, the (non-specific) adhesivity of the alkyne-terminated SAM II is comparable to the one of the native Au surface. Introduction of the OEG chain reduces the adhesion significantly, while the α-mannosyl-terminated SAM is effectively recognized by the

E. coli

leading to heavy adhesion.

FIGURE 1.10 Model structure of three-dimensional carbohydrate positioning in the interface provides the best strategy for overcoming the weak binding detection. The maltoside–OH terminated hybrid monolayer represents multivalent binding for Con A when the maltoside was diluted. The affinity of Con A and maltoside on the surface was enhanced in ˜10 mol % surfaces.

FIGURE 1.11 Assembly of mixed sugar/oligoethylene glycol (OEG) SAMs on gold.

FIGURE 1.12 (Upper) Formation of a glycan presenting supported lipid bilayer (SLB) surface from a small unilamellar vesicle (SUV) solution. (Lower) Schematic illustration of a glycan density gradient microarray for pathogen adhesion.

Chapter 02

FIGURE 2.1 (a) Schematic illustration of surface plasmon dispersion relation in free space (line b) and inside the dielectric (line a). Curves c and d show the dispersion of SP at the interface between metal and dielectric. Line c corresponds to higher RI for the dielectric medium than case d. The frequency is normalized to the plasma frequency

ω

p

, and the x component of the light wave vector is normalized to the plasma wave number, which is defined in the text. The inset in the right bottom shows metal–dielectric interface. (b) Excitation of surface plasmons by the attenuated total reflection (ATR) method in the so-called Kretschmann configuration.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!