153,99 €
Introducing the emerging field carbohydrate nanostructures, this book will be a unique resource for interested researchers to learn a range of methods of applying the field to their own work. Greater access, as well as greater collaboration, to this new interdisciplinary field is intended for both synthetic carbohydrate chemists and researchers in nanoscience related fields. It covers: * the main types of nanostructures presently under investigation for modification by carbohydrates, including nanoparticles, nanorods, magnetic particles, dendrimers, nanoporous, and surface confined structures * overview and introduction to the field of carbohydrate nanotechnology, and especially its applications to its biological systems * Provides a unique resource for researchers to learn about the techniques used to characterize the physical and biological properties of carbohydrate-modified nanostructures
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 899
Veröffentlichungsjahr: 2015
COVER
TITLE PAGE
CONTRIBUTORS
PREFACE
1 CARBOHYDRATE-PRESENTING SELF-ASSEMBLED MONOLAYERS: PREPARATION, ANALYSIS, AND APPLICATIONS IN MICROBIOLOGY
1.1 INTRODUCTION
1.2 PREPARATION OF SAMs CONTAINING CARBOHYDRATES
1.3 PREPARATION OF GLYCOSURFACES VIA A SECONDARY REACTION ON SAMs
1.4 CHARACTERIZATION OF GLYCOSURFACES
1.5 APPLICATION OF GLYCOSURFACES IN MICROBIOLOGY
1.6 OUTLOOK
ACKNOWLEDGMENTS
REFERENCES
2 PLASMONIC METHODS FOR THE STUDY OF CARBOHYDRATE INTERACTIONS
2.1 INTRODUCTION
2.2 PHYSICS OF SPR
2.3 SENSOR SURFACE AND IMMOBILIZATION CHEMISTRY
2.4 CONCLUSION
ACKNOWLEDGMENTS
REFERENCES
3 CARBOHYDRATE-MODIFIED GOLD NANOPARTICLES
3.1 INTRODUCTION
3.2 TUNABLE NANOSCALE PROPERTIES OF GOLD NANOPARTICLES
3.3 METHODS FOR ASSEMBLY OF GLYCONANOPARTICLES
3.4 DIRECT COUPLING OF CARBOHYDRATES ON REACTIVE NANOPARTICLE SURFACES
3.5 APPLICATION OF CARBOHYDRATE-MODIFIED GOLD NANOPARTICLES
3.6 CONCLUSION
REFERENCES
4 QUANTUM DOT GLYCOCONJUGATES
4.1 INTRODUCTION
4.2 SYNTHESIS OF QDs
4.3 INTERFACIAL CHEMISTRY AND BIOCONJUGATION
4.4 CARBOHYDRATES
4.5 FLUORESCENCE SPECTROSCOPY OF QDs WITH CARBOHYDRATES
4.6 ELECTROCHEMILUMINESCENCE OF QDs WITH CARBOHYDRATES
4.7 ELECTROCHEMISTRY OF QDs WITH CARBOHYDRATES
4.8 CONCLUDING REMARKS
ACKNOWLEDGMENTS
REFERENCES
5 CONJUGATION OF GLYCANS WITH CARBON NANOSTRUCTURES
5.1 CARBON NANOMATERIALS
5.2 CHEMISTRY
5.3 GLYCOCONJUGATES
5.4 CONCLUSION AND OUTLOOK
REFERENCES
6 SYNTHESIS OF GLYCOPOLYMERS AND RECENT DEVELOPMENTS
6.1 INTRODUCTION
6.2 SYNTHESIS OF GLYCOPOLYMERS
6.3 CONCLUSION
ACKNOWLEDGMENT
REFERENCES
7 GLYCOCLUSTERS AND THEIR APPLICATIONS AS ANTI-INFECTIVE AGENTS, VACCINES, AND TARGETED DRUG DELIVERY SYSTEMS
7.1 INTRODUCTION
7.2 INHIBITORS OF BACTERIAL AND VIRAL ADHESION
7.3 CARBOHYDRATE CLUSTERS AS SYNTHETIC VACCINES
7.4 CARBOHYDRATE CLUSTERS AS DRUG DELIVERY SYSTEMS
ACKNOWLEDGMENT
REFERENCES
8 GLYCO-FUNCTIONALIZED LIPOSOMES
8.1 INTRODUCTION
8.2 PREPARATION OF GLYCO-FUNCTIONALIZED LIPOSOMES
8.3 CHARACTERIZATION AND EVALUATION OF GLYCO-FUNCTIONALIZED LIPOSOMES
8.4 BIOMEDICAL APPLICATIONS OF GLYCO-FUNCTIONALIZED LIPOSOMES
8.5 SUMMARY
REFERENCES
9 GLYCANS IN MESOPOROUS AND NANOPOROUS MATERIALS
9.1 INTRODUCTION
9.2 POROUS MATERIAL CHARACTERISTICS
9.3 METHODS USEFUL FOR CHARACTERIZING POROUS MATERIALS
9.4 GLYCOPROTEIN ENRICHMENT
9.5 MESOPOROUS SILICA MATERIALS
9.6 POROUS ALUMINA AND POROUS TITANIA
9.7 MESOPOROUS CARBON
9.8 POROUS POLYMER MONOLITHS
9.9 NANOPOROUS GOLD
9.10 FUTURE
REFERENCES
10 APPLICATIONS OF NANOTECHNOLOGY IN ARRAY-BASED CARBOHYDRATE ANALYSIS AND PROFILING
10.1 INTRODUCTION
10.2 APPLICATIONS OF NANOTECHNOLOGY FOR GLYCOMIC ARRAYS
10.3 WHEREVER MICROARRAYS AND NANOTECHNOLOGY MEET, THERE WILL BE PROGRESS
REFERENCES
11 SCANNING PROBE MICROSCOPY FOR THE STUDY OF INTERACTIONS INVOLVING GLYCOPROTEINS AND CARBOHYDRATES
11.1 INTRODUCTION
11.2 FUNDAMENTAL ELEMENTS OF THE ATOMIC FORCE MICROSCOPE
11.3 VISUALIZATION AND NANOSCALE IMAGING OF CARBOHYDRATE DISTRIBUTION IN SAMS PREPARED ON GOLD VIA NATURAL ASSEMBLY OR NANOFABRICATION APPROACHES
11.4 PROBING SPECIFIC LECTIN–CARBOHYDRATE INTERACTIONS USING FORCE MEASUREMENT
11.5 PERSPECTIVES
11.6 CONCLUSIONS
REFERENCES
12 SIALIC ACID-MODIFIED NANOPARTICLES FOR β-AMYLOID STUDIES
12.1 INTRODUCTION
12.2 CARBOHYDRATES PLAY IMPORTANT ROLES IN Aβ AGGREGATION
12.3 NANOTECHNOLOGY IN Aβ RESEARCH
12.4 SIALIC ACID-FUNCTIONALIZED NANOPARTICLES FOR Aβ STUDIES
12.5 CONCLUSION AND FUTURE OUTLOOK
REFERENCES
13 CARBOHYDRATE NANOTECHNOLOGY AND ITS APPLICATIONS FOR THE TREATMENT OF CANCER
13.1 INTRODUCTION
13.2 CANCER BIOLOGY AND CONSIDERATIONS FOR EFFECTIVE NANOTHERAPY
13.3 NANOTECHNOLOGY FOR CANCER THERAPY
13.4 SUGARS, CANCER PROGRESSION, AND METASTASIS
13.5 GLYCONANOTECHNOLOGY AND CANCER
13.6 CONCLUSIONS AND OUTLOOK
REFERENCES
14 CARBOHYDRATE NANOTECHNOLOGY APPLIED TO VACCINE DEVELOPMENT
14.1 INTRODUCTION
14.2 GLYCOPOLYMERS IN VACCINE DEVELOPMENT
14.3 GNPs IN VACCINE DEVELOPMENT
14.4 CONCLUSIONS AND OUTLOOK
REFERENCES
15 CARBOHYDRATE NANOTECHNOLOGY AND ITS APPLICATION TO BIOSENSOR DEVELOPMENT
15.1 GLYCOMICS
15.2 SELF-ASSEMBLED MONOLAYERS (SAMs):
MODIFICATION OF INTERFACES AT NANOSCALE
15.3 BIOCONJUGATION TECHNIQUES FOR GLYCAN IMMOBILIZATION
15.4 LABEL-FREE TRANSDUCING PLATFORMS
15.5 CONSTRUCTION OF GLYCAN BIOSENSORS
15.6 APPLICATION OF GLYCAN BIOSENSORS
15.7 CONCLUSIONS
ACKNOWLEDGMENT
REFERENCES
16 NANOTOXICOLOGY ASPECTS OF CARBOHYDRATE NANOSTRUCTURES
16.1 TOXICOLOGY OF NANOMATERIALS
16.2 CYTOTOXICITY OF CARBOHYDRATE-MODIFIED NANOMATERIALS
16.3 TOXICITY-RELATED APPLICATION OF CARBOHYDRATE NANOMATERIALS
REFERENCES
INDEX
END USER LICENSE AGREEMENT
Chapter 01
TABLE 1.1 Approaches Used for the Direct Preparation of Carbohydrate-Presenting SAMs
TABLE 1.2 Immobilization of unmodified carbohydrates on surfaces with different end group terminations
TABLE 1.3 Immobilization of Synthetic Carbohydrates Derivatives on Surfaces with Different End Group Terminations
TABLE 1.4 Methods of Noncovalent Immobilization of Carbohydrates on Surfaces
Chapter 12
TABLE 12.1 Equilibrium Dissociation Constants of Aβ Binding to Different Generations of Dendrimers with Sialic Acid Modification
Chapter 13
TABLE 13.1 Nanoscale Delivery Systems Used in the Clinic
Chapter 15
TABLE 15.1 Examples of Different Functional Groups Involved in Glycan Activation/Immobilization
Chapter 16
TABLE 16.1 Major forces that regulate interactions between nanomaterials and biological systems
TABLE 16.2 NM Effects as the Basis for Pathophysiology and Toxicity
TABLE 16.3 Mechanisms of Nanomaterial Cytotoxicity and Potentially Useful Safe Design Features
TABLE 16.4 The Assessment of Blood Compatibility of Chitosan-Based Systems
Chapter 01
FIGURE 1.1 Mannose derivatives containing disulfides: (a) disulfide that can form multidentate binding on gold and (b) disulfide that results in monodentate binding on gold.
FIGURE 1.2 Immobilization of lactose as
p
-vinylbenzyllactonoamide on silicon.
FIGURE 1.3 Photochemical reactions used to immobilize unmodified carbohydrates on surfaces with photoactive end groups: (a) phthalimide, (b) benzophenone, and (c) perfluoro-phenylazide.
FIGURE 1.4 Chemical process for preparation of 3D aminooxy- and hydrazide functionalized glass slides.
FIGURE 1.5 Schematic representation of the self-assembled multicomponent system for the investigation of biomolecular binding.
FIGURE 1.6 Schematic representation of the carbohydrate immobilization using the noncovalent interaction between NeutrAvidin and biotin.
FIGURE 1.7 Main analysis techniques used to characterize glycosurfaces.
FIGURE 1.8 Schematic representation of direct
E. coli
detection and Con A-mediated
E. coli
detection.
FIGURE 1.9 Adhesion of fluorescent bacteria to the different stages of the SAM during the ‘dual click’ approach. The GFP-transformed
E. coli
bacteria (pPKL1162) enable a fast, direct fluorescence readout to investigate bacterial adhesion on surfaces. The native gold surface (I) was used as reference in each of the other experiments. As can be seen in the epifluorescence micrographs, the (non-specific) adhesivity of the alkyne-terminated SAM II is comparable to the one of the native Au surface. Introduction of the OEG chain reduces the adhesion significantly, while the α-mannosyl-terminated SAM is effectively recognized by the
E. coli
leading to heavy adhesion.
FIGURE 1.10 Model structure of three-dimensional carbohydrate positioning in the interface provides the best strategy for overcoming the weak binding detection. The maltoside–OH terminated hybrid monolayer represents multivalent binding for Con A when the maltoside was diluted. The affinity of Con A and maltoside on the surface was enhanced in ˜10 mol % surfaces.
FIGURE 1.11 Assembly of mixed sugar/oligoethylene glycol (OEG) SAMs on gold.
FIGURE 1.12 (Upper) Formation of a glycan presenting supported lipid bilayer (SLB) surface from a small unilamellar vesicle (SUV) solution. (Lower) Schematic illustration of a glycan density gradient microarray for pathogen adhesion.
Chapter 02
FIGURE 2.1 (a) Schematic illustration of surface plasmon dispersion relation in free space (line b) and inside the dielectric (line a). Curves c and d show the dispersion of SP at the interface between metal and dielectric. Line c corresponds to higher RI for the dielectric medium than case d. The frequency is normalized to the plasma frequency
ω
p
, and the x component of the light wave vector is normalized to the plasma wave number, which is defined in the text. The inset in the right bottom shows metal–dielectric interface. (b) Excitation of surface plasmons by the attenuated total reflection (ATR) method in the so-called Kretschmann configuration.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
