32,18 €
This textbook primarily explains the construction of the classical fluid model to readers in a holistic manner. Secondly, the book also explains some possible modifications of the classical fluid model which either make the model applicable in some special cases (viscous or turbulent fluids) or simplify it in accordance with the specific mechanical properties (hydrostatics, two-dimensional flows, boundary layers, etc.).
The book explains theoretical concepts in two parts. The first part is dedicated to the derivation of the classical model of the perfect fluid. The second part of the book covers important modifications to the fluid model which account for calculations of momentum, force and the laws of energy conservation. Concepts in this section include the redefinition of the stress tensor in cases of viscous or turbulent flows and laminar and turbulent boundary layers.
The text is supplemented by appropriate exercises and problems which may be used in practical classes. These additions serve to teach students how to work with complex systems governed by differential equations.
Classical Fluid Mechanics is an ideal textbook for students undertaking semester courses on fluid physics and mechanics in undergraduate degree programs.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 339
Veröffentlichungsjahr: 2017
This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal (“Work”). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.
Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: [email protected].
3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.
Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.
In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.
Bentham Science Publishers Ltd. Executive Suite Y - 2 PO Box 7917, Saif Zone Sharjah, U.A.E. Email: [email protected]
Writing a new fluid dynamics textbook is a challenging task. In 1895, Sir Horace Lamb established a very high standard with the first edition of Hydrodynamics. This classical presentation was followed by other excellent introductions into the field of fluid mechanics, among them Landau and Lifshitz, 1959, and Batchelor, 1967. The strength of M.Belevich’s book is in its rigorous and systematic approach to developing the mathematical model of fluid dynamics from the first principles. It carefully explains the underlying hypothesis and simplifications used to establish equations that govern motions of a fluid. Extensive use of vector and tensor analysis results in a compact and generalized narrative, without the restrictions of a particular coordinate system.
This textbook is by no means a comprehensive description of the field of fluid dynamics. Some of important problems (e.g. waves) were deliberately left out of the book’s framework. Since the text is based on a course that is taught to students who specialize in geophysical fluid dynamics, more engineering aspects of fluid mechanics (such as turbomachines and airfoils) are also not covered.
The book’s content not only provides a general description of fluid dynamics, but also teaches how to apply universal principles to build a mathematical model of a particular problem. The distinctive feature of M. Belevich’s book is a somewhat non-standard approach of describing the dynamics of fluid from the point of view of the observer (chapter 15). It allows to underline some physical aspects of fluid mechanics which are usually not explicitly established in most textbooks.
The book is complemented by a carefully selected set of exercises. It provides consistent and self-sustained introduction to fluid dynamics, giving enough details to be used either in class or for self-study. It can be used to acquire knowledge in particular aspects of hydromechanics, and also as a source of inspiration for students, researchers and teachers in the field of classical fluid mechanics.
This book presents the basis of the classical fluid mechanics and its content corresponds to a one-semester course which I am teaching from past several years to the 2nd year students of the Russian State Hydrometeorological University in St. Petersburg.
The goal of this book is twofold. Firstly, I wanted to provide a reader with a holistic idea of the fluid model and the way it is constructed. To show him, how the model of the fluid is developed, what main hypotheses lie in its basis and what general conclusions based on observations (the so-called laws of nature) make up the model. Secondly, I wished to demonstrate some possible modifications of the initial model which either make the model applicable in some special cases (viscous or turbulent fluid) or simplify it in accordance with peculiarity of a particular problem (hydrostatics, two-dimensional flows, boundary layers, etc.).
The whole theoretical material of the book naturally falls into two parts. The first part is fully dedicated to development of the model of the fluid in the Cauchy form. Here, the basic notions are introduced, main hypotheses are discussed and necessary postulates, which actually make up the model of continuum, are formulated. Non-coordinate tensor form of equations is actively used. This shortens formulas and makes results more readable. With that end in view, a brief introduction in tensor analysis is given in Ch.4. This part results in derivation of the perfect fluid model which turns out to be the simplest although quite efficient model.
In the second part of the book the most important modifications of the developed model are considered. First of all this concerns the redefinition of the stress tensor which is needed when viscosity is taken into account. Another important modification is connected with averaging of equations of the model which is necessary in case of turbulent flows. The concept of the boundary layer is also rather fruitful. Both laminar and turbulent boundary layers are discussed in Ch.14.
It is clear, that all this does not exhaust theoretical fluid mechanics, and that in the study of many important problems, it is necessary to refer to other books, at times rather special. However the basis of all such particular cases of the fluid mechanics is the same, and this book is aimed to discuss this topic.
Exercises and problems which are solved by students in practical classes are integral part of this book. They are chosen so as to teach students to work with complex systems of differential equations, since different fluid models are just such. We are training skills in writing equations in vector-matrix form, transition to component form of notation, applying of the index summation convention. Special attention is paid to formalizing of a verbal description of a problem (choice of coordinate systems, their orientation, accounting directions and symmetries inherent in the problem, etc.) as well as the mathematical problem posing. The system of fluid mechanics equations is quite complex and does not have analytic solutions in most interesting cases. Therefore, the main goal of these exercises is to elaborate the ability to see a particular problem from different viewpoints and to estimate its possible simplifications.
Theoretical fluid mechanics is very mathematized discipline, so the reader must meet certain requirements. Knowledge of the following topics of algebra and calculus is assumed: determinants, matrices, eigenvalue problem, vector spaces, calculus, vector analysis, differential equations.
All required information about tensors is given in Ch.4.
The author confirms that author has no conflict of interest to declare for this publication.
Besides my explicit and implicit teachers, I would like to especially thank those of my friends and colleagues, who patiently and sometimes willingly discussed with me various aspects of this course. These are primarily Dr. S.A.Fokin and A.A.Tron’. Their remarks, comments and suggestions were very helpful.
A scientific law is a statement … possessing such attributes: 1) it is true only under certain conditions; 2) under these conditions, it is true always and everywhere without any exceptions…; 3) conditions under which this statement is true, are never realized in fact fully, but only partially and approximately. Therefore, it’s impossible to say literally that scientific laws are found in the study of reality (are discovered). They are devised (are invented) based on the study of experimental data in such a way that they then may be used to obtain new judgments of given judgments on the reality (including, for prediction purely logical way). Scientific laws themselves can not be verified and can not be refuted by experience. They can be justified or not, depending on how well or poorly they perform the above-mentioned role.
This introductory chapter tries to explain what we are going to do, what do notions such as fluid and a model of a physical phenomenon mean, what for, such models are developed, and what features of a phenomenon a model should be necessarily able to describe and so on.