Concepts and Case Studies in Chemical Biology - Herbert Waldmann - E-Book

Concepts and Case Studies in Chemical Biology E-Book

Herbert Waldmann

0,0
74,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Retaining the proven didactic concept of the successful "Chemical Biology - Learning through Case Studies", this sequel features 27 new case studies, reflecting the rapid growth in this interdisciplinary topic over the past few years.
Edited by two of the world's leading researchers in the field, this textbook introduces students and researchers to the modern approaches in chemical biology, as well as important results, and the techniques and methods applied. Each chapter presents a different biological problem taken from everyday lab work, elucidated by an international team of renowned scientists.
With its broad coverage, this is a valuable source of information for students, graduate students, and researchers working on the borderline between chemistry, biology, and biochemistry.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 694

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

List of Contributors

Introduction and Preface

Reference

Abbreviations

Chapter 1: Real-Time and Continuous Sensors of Protein Kinase Activity Utilizing Chelation-Enhanced Fluorescence

1.1 Introduction

1.2 The Biological Problem

1.3 The Chemical Approach

1.4 Chemical Biological Research/Evaluation

1.5 Conclusions

References

Chapter 2: FLiK and FLiP: Direct Binding Assays for the Identification of Stabilizers of Inactive Kinase and Phosphatase Conformations

2.1 Introduction – The Biological Problem

2.2 The Chemical Approach

2.3 Chemical Biological Research/Evaluation

2.4 Conclusions

References

Chapter 3: Strategies for Designing Specific Protein Tyrosine Phosphatase Inhibitors and Their Intracellular Activation

3.1 Introduction – The Biological Problem

3.2 The Chemical Approach

3.3 Chemical Biological Research/Evaluation

3.4 Conclusions

References

Chapter 4: Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation

4.1 Introduction

4.2 The Biological Problem

4.3 The Chemical Approach

4.4 Chemical Biological Research/Evaluation

4.5 Conclusion

References

Chapter 5: Autophagy: Assays and Small-Molecule Modulators

5.1 Introduction

5.2 The Biological Problem

5.3 The Chemical Approach

5.4 Chemical Biological Evaluation

5.5 Conclusion

References

Chapter 6: Elucidation of Protein Function by Chemical Modification

6.1 Introduction

6.2 The Biological Problem

6.3 The Chemical Approach

6.4 Biological Research/Evaluation

6.5 Conclusion

References

Chapter 7: Inhibition of Oncogenic K-Ras Signaling by Targeting K-Ras–PDEδ Interaction

7.1 Introduction

7.2 The Biological Problem

7.3 The Chemical Approach

7.4 Chemical Biological Evaluation

7.5 Conclusions

References

Chapter 8: Development of Acyl Protein Thioesterase 1 (APT1) Inhibitor Palmostatin B That Revert Unregulated H/N-Ras Signaling

8.1 Introduction

8.2 The Biological Problem – The Role of APT1 in Ras Signaling

8.3 The Chemical Approach

8.4 Chemical Biological Research/Evaluation

8.5 Conclusions

References

Chapter 9: Functional Analysis of Host–Pathogen Posttranslational Modification Crosstalk of Rab Proteins

9.1 Introduction

9.2 The Biological Problem

9.3 The Chemical Approach

9.4 Chemical Biological Research/Evaluation

9.5 Conclusions

References

Chapter 10: Chemical Biology Approach to Suppression of Statin-Induced Muscle Toxicity

10.1 Introduction

10.2 The Biological Problem

10.3 The Chemical Approach

10.4 Chemical Biology Research/Evaluation

10.5 Conclusion

References

Chapter 11: A Target Identification System Based on MorphoBase, ChemProteoBase, and Photo-Cross-Linking Beads

11.1 Introduction

11.2 The Biological Problem

11.3 Chemical Approaches

11.4 Chemical Biological Research/Evaluation

11.5 Conclusion

References

Chapter 12: Activity-Based Proteasome Profiling in Medicinal Chemistry and Chemical Biology

12.1 Introduction

12.2 The Biological Problem

12.3 The Chemical Approach

12.4 Biological Research/Evaluation

12.5 Conclusions

References

Chapter 13: Rational Design of Activity-Based Retaining β-Exoglucosidase Probes

13.1 Introduction

13.2 The Biological Problem

13.3 The Chemical Approach

13.4 Biological Research/Evaluation

13.5 Conclusions

References

Chapter 14: Modulation of ClpP Protease Activity: from Antibiotics to Antivirulence

14.1 Introduction

14.2 The Biological Problem

14.3 The Chemical Approach

14.4 The Discovery of a Novel Antibiotic Mechanism

14.5 The Antivirulence Approach

14.6 Conclusions

References

Chapter 15: Affinity-Based Isolation of Molecular Targets of Clinically Used Drugs

15.1 Introduction – The Biological/Medicinal Problem

15.2 The Chemical Approach

15.3 Chemical Biological Research

15.4 Conclusion

References

Chapter 16: Identification of the Targets of Natural-Product-Inspired Mitotic Inhibitors

16.1 Introduction

16.2 The Biological Problem

16.3 The Chemical Approach

16.4 Chemical Biological Evaluation

16.5 Conclusion

References

Chapter 17: Finding a Needle in a Haystack. Identification of Tankyrase, a Novel Therapeutic Target of the Wnt Pathway Using Chemical Genetics

17.1 Introduction

17.2 The Biological Problem

17.3 The Chemical Approach

17.4 Chemical Biological Research/Evaluation

17.5 Conclusion

References

Chapter 18: The Identification of the Molecular Receptor of the Plant Hormone Abscisic Acid

18.1 Introduction

18.2 The Biological Problem

18.3 The Chemical Genetics Approach

18.4 The Chemical Biology Approach

18.5 Conclusion

References

Chapter 19: Chemical Biology in Plants: Finding New Connections between Pathways Using the Small Molecule Sortin1

19.1 Introduction

19.2 The Biological Problem

19.3 The Chemical Approach

19.4 Biological Research/Evaluation

19.5 Conclusion

Acknowledgment

References

Chapter 20: Selective Targeting of Protein Interactions Mediated by BET Bromodomains

20.1 Introduction

20.2 The Biological Problem

20.3 The Chemical Approach

20.4 Chemical/Biological Investigations

20.5 Conclusion

References

Chapter 21: The Impact of Distant Polypharmacology in the Chemical Biology of PARPs

21.1 Introduction

21.2 The Biological Problem

21.3 The Chemical Approach

21.4 Chemical Biological Research/Evaluation

21.5 Conclusions

References

Chapter 22: Splicing Inhibitors: From Small Molecule to RNA Metabolism

22.1 Introduction

22.2 The Biological Problem

22.3 The Chemical Approach

22.4 Chemical Biological Research/Evaluation

22.5 Conclusion

References

Chapter 23: Photochemical Control of Gene Function in Zebrafish Embryos with Light-Activated Morpholinos

23.1 Introduction

23.2 The Biological Problem

23.3 The Chemical Approach

23.4 Chemical Biological Research/Evaluation

23.5 Conclusion

Acknowledgment

References

Chapter 24: Life Cell Imaging of mRNA Using PNA FIT Probes

24.1 Introduction

24.2 The Biological Problem

24.3 The Chemical Approach

24.4 Chemical Biological Research/Validation

24.5 Conclusion

References

Chapter 25: Targeting the Transcriptional Hub β-Catenin Using Stapled Peptides

25.1 Introduction

25.2 The Biological Problem

25.3 The Chemical Approach: Hydrocarbon Peptide Stapling

25.4 The Biological Approach: Phage-Display-Based Optimization

25.5 Biochemical and Biological Evaluation

25.6 Conclusions

References

Chapter 26: Diversity-Oriented Synthesis: Developing New Chemical Tools to Probe and Modulate Biological Systems

26.1 Introduction

26.2 The Biological Problem

26.3 The Chemical Approach

26.4 Chemical Biology Research

26.5 Conclusion

References

Chapter 27: Scaffold Diversity Synthesis with Branching Cascades Strategy

27.1 Introduction

27.2 The Biological/Pharmacological Problem: Discovering Small Bioactive Molecules

27.3 The Chemical Approach: Scaffold Diversity

27.4 Chemical/Biological Evaluation – Branching Cascades Strategy in Scaffold Diversity Synthesis

27.5 Conclusions

References

Index

End User License Agreement

Pages

XVII

XVIII

XIX

XX

XXI

XXII

XXIII

XXIV

XXV

XXVI

XXVII

XXIX

XXX

XXXI

XXXII

XXXIII

XXXIV

XXXV

XXXVI

XXXVII

XXXVIII

XXXIX

XL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

141

142

143

144

145

146

147

148

149

150

151

152

153

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

309

310

311

312

313

314

315

316

317

318

319

320

321

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

415

416

417

418

419

420

421

422

Guide

Cover

Table of Contents

Introduction and Preface

Chapter 1: Real-Time and Continuous Sensors of Protein Kinase Activity Utilizing Chelation-Enhanced Fluorescence

List of Illustrations

Figure 1

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 1

Figure 3.1

Figure 2

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 1

Figure 4.1

Figure 4.2

Figure 2

Figure 3

Figure 4

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 8.1

Figure 8.2

Scheme 8.1

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Figure 1

Figure 14.5

Figure 14.6

Figure 2

Figure 15.1

Figure 15.2

Figure 15.3

Figure 1

Figure 16.1

Figure 2

Figure 3

Scheme 16.1

Figure 16.2

Scheme 16.2

Figure 16.3

Figure 4

Figure 16.4

Figure 17.1

Figure 17.2

Scheme 17.1

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 18.1

Figure 18.2

Figure 18.3

Figure 18.4

Figure 18.5

Figure 18.6

Figure 1

Figure 18.7

Figure 18.8

Figure 2

Figure 18.9

Figure 18.10

Figure 18.11

Figure 18.12

Figure 18.13

Figure 19.1

Figure 19.2

Figure 19.3

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.6

Figure 20.7

Figure 20.8

Figure 21.1

Figure 21.2

Figure 21.3

Figure 21.4

Figure 21.5

Figure 22.1

Figure 22.2

Figure 23.1

Figure 23.2

Figure 23.3

Figure 23.4

Figure 23.5

Figure 23.6

Figure 24.1

Scheme 24.1

Figure 24.2

Figure 24.3

Figure 24.4

Figure 24.5

Figure 24.6

Figure 25.1

Figure 25.2

Figure 25.3

Figure 25.4

Figure 1

Figure 25.5

Figure 25.6

Figure 26.1

Schemes 26.1

Figure 26.2

Figure 26.2

Figure 26.3

Figure 1

Figure 2

Figure 27.1

Scheme 27.1

Scheme 27.2

Figure 27.2

Figure 3

Figure 27.3

Figure 27.4

Scheme 27.3

Scheme 27.4

List of Tables

Table 1.1

Table 2.1

Table 8.1

Table 13.1

Table 13.2

Table 18.1

Table 26.1

Related Titles

Trabocchi, A. (ed.)

Diversity-Oriented Synthesis

Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology

2013

Print ISBN: 978-1-118-14565-4, also available in digital formats

Sierra, M.A., de la Torre, M.C., Cossio, F.P.

More Dead Ends and Detours

En Route to Successful Total Synthesis

2013

Print ISBN: 978-3-527-32976-2

Christmann, M., Bräse, S. (eds.)

Asymmetric Synthesis II

More Methods and Applications

2012

Print ISBN: 978-3-527-32900-7, also available in digital formats

Civjan, N. (ed.)

Chemical Biology

Approaches to Drug Discovery and Development to Targeting Disease

2012

Print ISBN: 978-1-118-10118-6, also available in digital formats

Luisi, P.P. (ed.)

Chemical Synthetic Biology

2011

Print ISBN: 978-0-470-71397-6, also available in digital formats

Waldmann, H., Janning, P. (eds.)

Chemical Biology

Learning through Case Studies

2009

Print ISBN: 978-3-527-32330-2

Edited by Herbert Waldmann and Petra Janning

Concepts and Case Studies in Chemical Biology

The Editors

Prof. Dr. Herbert Waldmann

MPI of Molecular Physiology

Otto-Hahn-Str. 11

44227 Dortmund

Germany

Dr. Petra Janning

MPI of Molecular Physiology

Otto-Hahn-Str. 11

44227 Dortmund

Germany

Cover

fotolia.com © Paolo Toscani

We thank Claudia Pieczka, MPI of Molecular Physiology, Dortmund, Germany for preparing the cover illustration.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33611-1

ePDF ISBN: 978-3-527-67598-2

ePub ISBN: 978-3-527-67600-2

Mobi ISBN: 978-3-527-67599-9

List of Contributors

Hans Aerts

University of Amsterdam

Department of Medical Biochemistry

Academic Medical Centre

Amsterdam

The Netherlands

Albert A. Antolín

Universitat Pompeu Fabra

Systems Pharmacology

Research Program on Biomedical Informatics

IMIM Hospital del Mar Medical Research Institute

Doctor Aiguader 88

Barcelona

Spain

Thomas Beenakker

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Rolf Boot

University of Amsterdam

Department of Medical Biochemistry

Academic Medical Centre

Amsterdam

The Netherlands

Gerjan de Bruin

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Atwood K. Cheung

Novartis Institutes for BioMedical Research, Inc.

Global Discovery Chemistry

Massachusetts Avenue

Cambridge, MA 02139

USA

Jeroen Codée

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Feng Cong

Novartis Institutes for BioMedical Research, Inc.

Developmental and Molecular Pathways

Massachusetts Avenue

Cambridge, MA 02139

USA

Alexander Deiters

University of Pittsburgh

Department of Chemistry

Chevron Science Center

Parkman Avenue

Pittsburgh, PA 15260

USA

Frank J. Dekker

Groningen University

Department of Pharmaceutical Gene Modulation

Antonius Deusinglaan 1

av Groningen

Netherlands

Hans van den Elst

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Bogdan Florea

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Yushi Futamura

RIKEN

Antibiotics Laboratory

2-1 Hirosawa

Wako

Saitama 351-0198

Japan

Warren R. J. D. Galloway

University of Cambridge

Department of Chemistry

Lensfield Road

Cambridge CB2 1 EW

UK

Malte Gersch

Technische Universität München

Department of Chemistry

Lichtenbergstraße 4

Garching

Germany

Paul Geurink

The Netherlands Cancer Institute (NKI)

Division of Cell Biology

Plesmanlaan 121

1066 Amsterdam

The Netherlands

Roger S. Goody

Max Planck Institute of Molecular Physiology

Department of Physical Biochemistry

Otto-Hahn-Straße 11

Dortmund

Germany

Tom N. Grossmann

Chemical Genomics Centre of the Max Planck Society

Otto-Hahn-Straße 15

Dortmund

Germany

Kathy Hadje-Georgiou

University of Cambridge

Department of Chemistry

Lensfield Road

Cambridge CB2 1 EW

UK

Christian Hedberg

Max Planck Institute of Molecular Physiology

Department of Chemical Biology

Otto-Hahn-Straße 11

Dortmund

Germany

Andreas Herrmann

Humboldt University Berlin

Department of Biology

Invalidenstrasse 42

Berlin

Germany

Glenn R. Hicks

University of California

Riverside

Center for Plant Cell Biology and Department of Botany and Plant Sciences

University Avenue

Riverside, CA 92521

USA

Birgit Hoeger

European Molecular Biology Laboratory (EMBL)

Genome Biology Unit

Meyerhofstrasse 1

Heidelberg

Germany

Felix Hövelmann

Humboldt University Berlin

Department of Chemistry

Brook-Taylor-Straße 2

Berlin

Germany

Barbara Imperiali

Massachusetts Institute of Technology

Departments of Biology and Chemistry

68-380, 77 Massachusetts Avenue

Cambridge, MA 02139

USA

Aymelt Itzen

Technische Universität München

Center of Integrated Protein Science Munich

Department Chemie

AG Proteinchemie

Lichtenbergstraße 4

Garching

Germany

Jianbing Jiang

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Markus Kaiser

Universität Duisburg-Essen

Zentrum für Medizinische Biotechnologie

Fakultät für Biologie

Universitätsstrasse 2

Essen

Germany

Wouter Kallemeijn

University of Amsterdam

Department of Medical Biochemistry

Academic Medical Centre

Amsterdam

The Netherlands

Stefan Knapp

University of Oxford

Nuffield Department of Clinical Medicine

Structural Genomics Consortium and Target Discovery Institute

Roosevelt Drive

Oxford OX3 7FZ

UK

Andrea Knoll

Humboldt University Berlin

Department of Chemistry

Brook-Taylor-Straße 2

Berlin

Germany

Maja Köhn

European Molecular Biology Laboratory (EMBL)

Genome Biology Unit

Meyerhofstrasse 1

Heidelberg

Germany

Yasumitsu Kondoh

RIKEN Center for Sustainable Resource Science (CSRS)

Chemical Biology Research Group

2-1 Hirosawa

Wako

Saitama 351-0198

Japan

and

RIKEN

Antibiotics Laboratory

2-1 Hirosawa

Wako

Saitama 351-0198

Japan

Kamal Kumar

Max Planck Institute of Molecular Physiology

Department of Chemical Biology

Otto-Hahn-Straße 11

Dortmund

Germany

Susann Kummer

Universitätsklinikum Heidelberg

Department of Infectiology

Im Neuenheimer Feld 324

Heidelberg

Germany

Luca Laraia

University of Cambridge

Department of Chemistry

Lensfield Road

Cambridge CB2 1 EW

UK

Kah-Yee Li

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Nan Li

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Hannah Lingard

University of Oxford

Nuffield Department of Clinical Medicine

Structural Genomics Consortium and Target Discovery Institute

Roosevelt Drive

Oxford OX3 7FZ

UK

Wouter van der Linden

Standford University

Department of Pathology

School of Medicine

Pasteur Drive

Stanford, CA 94305-5324

USA

Qingyang Liu

North Carolina State University

Department of Chemistry

Yarbrough Drive

Raleigh, NC 27695-8204

USA

Gijs van der Marel

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Jordi Mestres

Universitat Pompeu Fabra

Systems Pharmacology

Research Program on Biomedical Informatics

IMIM Hospital del Mar Medical Research Institute

Doctor Aiguader 88

Barcelona

Spain

Susanne Müller

University of Oxford

Nuffield Department of Clinical Medicine

Structural Genomics Consortium and Target Discovery Institute

Roosevelt Drive

Oxford OX3 7FZ

UK

Makoto Muroi

RIKEN Center for Sustainable Resource Science (CSRS)

Chemical Biology Research Group

2-1 Hirosawa

Wako

Saitama 351-0198

Japan

and

RIKEN

Antibiotics Laboratory

Hirosawa 2-1

Wako

Saitama 351-0198

Japan

Feilin Nie

University of Cambridge

Department of Chemistry

Lensfield Road

Cambridge CB2 1 EW

UK

Julian Oeljeklaus

Universität Duisburg-Essen

Zentrum für Medizinische Biotechnologie

Fakultät für Biologie

Universitätsstrasse 2

Essen

Germany

Hiroyuki Osada

RIKEN Center for Sustainable Resource Science (CSRS)

Chemical Biology Research Group

Hirosawa 2-1

Wako

Saitama 351-0198

Japan

and

RIKEN

Antibiotics Laboratory

Hirosawa 2-1

Wako

Saitama 351-0198

Japan

Herman Overkleeft

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Guillem Paniagua

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Laura B. Peterson

Massachusetts Institute of Technology

Departments of Biology and Chemistry

68-380, 77 Massachusetts Avenue

Cambridge, MA 02139

USA

Natasha V. Raikhel

University of California

Riverside

Center for Plant Cell Biology and Department of Botany and Plant Sciences

University Avenue

Riverside, CA 92521

USA

Daniel Rauh

Technische Universität Dortmund

Fakultät für Chemie und Chemische Biologie

Otto-Hahn-Straße 6

Dortmund

Germany

Shin-ichi Sato

Kyoto University

Institute for Integrated Cell-Material Sciences (WPI-iCeMS)

Kyoto 611-0011

Japan

Tilmann Schneider-Poetsch

RIKEN

Chemical Genetics Laboratory

Hirosawa 2-1

Wako

Saitama 351-0198

Japan

Oliver Seitz

Humboldt University Berlin

Department of Chemistry

Brook-Taylor-Straße 2

Berlin

Germany

Stephan A. Sieber

Technische Universität München

Department of Chemistry

Lichtenbergstraße 4

Garching

Germany

Jeffrey R. Simard

Amgen, Inc.

Binney St.

Cambridge, MA 02142

USA

David R. Spring

University of Cambridge

Department of Chemistry

Lensfield Road

Cambridge CB2 1 EW

UK

Mario van der Stelt

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Gemma Triola

Spanish National Research Council (CSIC)

Institute of Advanced Chemistry of Catalonia (IQAC)

Department of Biomedicinal Chemistry

Jordi Girona 18-26

Barcelona

Spain

Nachiket Vartak

Max Planck Institute of Molecular Physiology

Department of Chemical Biology

Otto-Hahn-Straße 11

Dortmund

Germany

Motonari Uesugi

Kyoto University

Institute for Integrated Cell-Material Sciences (WPI-iCeMS)

Kyoto 611-0011

Japan

and

Kyoto University

Institute for Chemical Research

Uji, Kyoto 611-0011

Japan

Gregory L. Verdine

Harvard University

Departments of Stem Cell & Regenerative Biology

Chemistry & Chemical Biology, and Molecular & Cellular Biology

Cambridge, MA 02138

USA

Martijn Verdoes

Radboud University

Department of Tumor Immunology

Nijmegen Medical Centre

Geert Grooteplein 26/28

GA 6525 Nijmegen

The Netherlands

Bridget K. Wagner

Broad Institute

Center for the Science of Therapeutics

Cambridge Center 3027

Cambridge, MA 02142

USA

Marthe Walvoort

Massachusetts Institute of Technology

Department of Biology

Massachusetts Avenue

Cambridge, MA 02139

USA

Yansong Wang

European Molecular Biology Laboratory (EMBL)

Genome Biology Unit

Meyerhofstrasse 1

Heidelberg

Germany

David Wilcke

University of Cambridge

Department of Chemistry

Lensfield Road

Cambridge CB2 1 EW

UK

Lianne Willems

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Martin Witte

University of Groningen

Stratingh Institute of Chemistry

Bio-Organic Chemistry

Nijenborgh 7

AG 9747 Groningen

The Netherlands

Yaowen Wu

Chemical Genomics Centre of the Max Planck Society

Otto-Hahn-Straße 15

Dortmund

Germany

Bo-Tao Xin

Leiden University

Leiden Institute of Chemistry

Einsteinweg 55

2333 Leiden

The Netherlands

Minoru Yoshida

RIKEN

Chemical Genetics Laboratory

Hirosawa 2-1

Wako

Saitama 351-0198

Japan

Chunhua Zhang

University of California

Riverside

Center for Plant Cell Biology and Department of Botany and Plant Sciences

University Avenue

Riverside, CA 92521

USA

Lei Zhao

Chemical Genomics Centre of the Max Planck Society

Otto-Hahn-Straße 15

Dortmund

Germany

Slava Ziegler

Max Planck Institute of Molecular Physiology

Department of Chemical Biology

Otto-Hahn-Straße 11

Dortmund

Germany

Introduction and Preface

“Chemical Biology may be defined as the application of chemical methods and techniques to the study of biological phenomena, that is, chemical biology research seeks new insights into biology by means of an approach originating from an enabling chemistry tool box.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!