74,99 €
Retaining the proven didactic concept of the successful "Chemical Biology - Learning through Case Studies", this sequel features 27 new case studies, reflecting the rapid growth in this interdisciplinary topic over the past few years.
Edited by two of the world's leading researchers in the field, this textbook introduces students and researchers to the modern approaches in chemical biology, as well as important results, and the techniques and methods applied. Each chapter presents a different biological problem taken from everyday lab work, elucidated by an international team of renowned scientists.
With its broad coverage, this is a valuable source of information for students, graduate students, and researchers working on the borderline between chemistry, biology, and biochemistry.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 694
Veröffentlichungsjahr: 2014
Cover
Related Titles
Title Page
Copyright
List of Contributors
Introduction and Preface
Reference
Abbreviations
Chapter 1: Real-Time and Continuous Sensors of Protein Kinase Activity Utilizing Chelation-Enhanced Fluorescence
1.1 Introduction
1.2 The Biological Problem
1.3 The Chemical Approach
1.4 Chemical Biological Research/Evaluation
1.5 Conclusions
References
Chapter 2: FLiK and FLiP: Direct Binding Assays for the Identification of Stabilizers of Inactive Kinase and Phosphatase Conformations
2.1 Introduction – The Biological Problem
2.2 The Chemical Approach
2.3 Chemical Biological Research/Evaluation
2.4 Conclusions
References
Chapter 3: Strategies for Designing Specific Protein Tyrosine Phosphatase Inhibitors and Their Intracellular Activation
3.1 Introduction – The Biological Problem
3.2 The Chemical Approach
3.3 Chemical Biological Research/Evaluation
3.4 Conclusions
References
Chapter 4: Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation
4.1 Introduction
4.2 The Biological Problem
4.3 The Chemical Approach
4.4 Chemical Biological Research/Evaluation
4.5 Conclusion
References
Chapter 5: Autophagy: Assays and Small-Molecule Modulators
5.1 Introduction
5.2 The Biological Problem
5.3 The Chemical Approach
5.4 Chemical Biological Evaluation
5.5 Conclusion
References
Chapter 6: Elucidation of Protein Function by Chemical Modification
6.1 Introduction
6.2 The Biological Problem
6.3 The Chemical Approach
6.4 Biological Research/Evaluation
6.5 Conclusion
References
Chapter 7: Inhibition of Oncogenic K-Ras Signaling by Targeting K-Ras–PDEδ Interaction
7.1 Introduction
7.2 The Biological Problem
7.3 The Chemical Approach
7.4 Chemical Biological Evaluation
7.5 Conclusions
References
Chapter 8: Development of Acyl Protein Thioesterase 1 (APT1) Inhibitor Palmostatin B That Revert Unregulated H/N-Ras Signaling
8.1 Introduction
8.2 The Biological Problem – The Role of APT1 in Ras Signaling
8.3 The Chemical Approach
8.4 Chemical Biological Research/Evaluation
8.5 Conclusions
References
Chapter 9: Functional Analysis of Host–Pathogen Posttranslational Modification Crosstalk of Rab Proteins
9.1 Introduction
9.2 The Biological Problem
9.3 The Chemical Approach
9.4 Chemical Biological Research/Evaluation
9.5 Conclusions
References
Chapter 10: Chemical Biology Approach to Suppression of Statin-Induced Muscle Toxicity
10.1 Introduction
10.2 The Biological Problem
10.3 The Chemical Approach
10.4 Chemical Biology Research/Evaluation
10.5 Conclusion
References
Chapter 11: A Target Identification System Based on MorphoBase, ChemProteoBase, and Photo-Cross-Linking Beads
11.1 Introduction
11.2 The Biological Problem
11.3 Chemical Approaches
11.4 Chemical Biological Research/Evaluation
11.5 Conclusion
References
Chapter 12: Activity-Based Proteasome Profiling in Medicinal Chemistry and Chemical Biology
12.1 Introduction
12.2 The Biological Problem
12.3 The Chemical Approach
12.4 Biological Research/Evaluation
12.5 Conclusions
References
Chapter 13: Rational Design of Activity-Based Retaining β-Exoglucosidase Probes
13.1 Introduction
13.2 The Biological Problem
13.3 The Chemical Approach
13.4 Biological Research/Evaluation
13.5 Conclusions
References
Chapter 14: Modulation of ClpP Protease Activity: from Antibiotics to Antivirulence
14.1 Introduction
14.2 The Biological Problem
14.3 The Chemical Approach
14.4 The Discovery of a Novel Antibiotic Mechanism
14.5 The Antivirulence Approach
14.6 Conclusions
References
Chapter 15: Affinity-Based Isolation of Molecular Targets of Clinically Used Drugs
15.1 Introduction – The Biological/Medicinal Problem
15.2 The Chemical Approach
15.3 Chemical Biological Research
15.4 Conclusion
References
Chapter 16: Identification of the Targets of Natural-Product-Inspired Mitotic Inhibitors
16.1 Introduction
16.2 The Biological Problem
16.3 The Chemical Approach
16.4 Chemical Biological Evaluation
16.5 Conclusion
References
Chapter 17: Finding a Needle in a Haystack. Identification of Tankyrase, a Novel Therapeutic Target of the Wnt Pathway Using Chemical Genetics
17.1 Introduction
17.2 The Biological Problem
17.3 The Chemical Approach
17.4 Chemical Biological Research/Evaluation
17.5 Conclusion
References
Chapter 18: The Identification of the Molecular Receptor of the Plant Hormone Abscisic Acid
18.1 Introduction
18.2 The Biological Problem
18.3 The Chemical Genetics Approach
18.4 The Chemical Biology Approach
18.5 Conclusion
References
Chapter 19: Chemical Biology in Plants: Finding New Connections between Pathways Using the Small Molecule Sortin1
19.1 Introduction
19.2 The Biological Problem
19.3 The Chemical Approach
19.4 Biological Research/Evaluation
19.5 Conclusion
Acknowledgment
References
Chapter 20: Selective Targeting of Protein Interactions Mediated by BET Bromodomains
20.1 Introduction
20.2 The Biological Problem
20.3 The Chemical Approach
20.4 Chemical/Biological Investigations
20.5 Conclusion
References
Chapter 21: The Impact of Distant Polypharmacology in the Chemical Biology of PARPs
21.1 Introduction
21.2 The Biological Problem
21.3 The Chemical Approach
21.4 Chemical Biological Research/Evaluation
21.5 Conclusions
References
Chapter 22: Splicing Inhibitors: From Small Molecule to RNA Metabolism
22.1 Introduction
22.2 The Biological Problem
22.3 The Chemical Approach
22.4 Chemical Biological Research/Evaluation
22.5 Conclusion
References
Chapter 23: Photochemical Control of Gene Function in Zebrafish Embryos with Light-Activated Morpholinos
23.1 Introduction
23.2 The Biological Problem
23.3 The Chemical Approach
23.4 Chemical Biological Research/Evaluation
23.5 Conclusion
Acknowledgment
References
Chapter 24: Life Cell Imaging of mRNA Using PNA FIT Probes
24.1 Introduction
24.2 The Biological Problem
24.3 The Chemical Approach
24.4 Chemical Biological Research/Validation
24.5 Conclusion
References
Chapter 25: Targeting the Transcriptional Hub β-Catenin Using Stapled Peptides
25.1 Introduction
25.2 The Biological Problem
25.3 The Chemical Approach: Hydrocarbon Peptide Stapling
25.4 The Biological Approach: Phage-Display-Based Optimization
25.5 Biochemical and Biological Evaluation
25.6 Conclusions
References
Chapter 26: Diversity-Oriented Synthesis: Developing New Chemical Tools to Probe and Modulate Biological Systems
26.1 Introduction
26.2 The Biological Problem
26.3 The Chemical Approach
26.4 Chemical Biology Research
26.5 Conclusion
References
Chapter 27: Scaffold Diversity Synthesis with Branching Cascades Strategy
27.1 Introduction
27.2 The Biological/Pharmacological Problem: Discovering Small Bioactive Molecules
27.3 The Chemical Approach: Scaffold Diversity
27.4 Chemical/Biological Evaluation – Branching Cascades Strategy in Scaffold Diversity Synthesis
27.5 Conclusions
References
Index
End User License Agreement
XVII
XVIII
XIX
XX
XXI
XXII
XXIII
XXIV
XXV
XXVI
XXVII
XXIX
XXX
XXXI
XXXII
XXXIII
XXXIV
XXXV
XXXVI
XXXVII
XXXVIII
XXXIX
XL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
141
142
143
144
145
146
147
148
149
150
151
152
153
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
309
310
311
312
313
314
315
316
317
318
319
320
321
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
415
416
417
418
419
420
421
422
Cover
Table of Contents
Introduction and Preface
Chapter 1: Real-Time and Continuous Sensors of Protein Kinase Activity Utilizing Chelation-Enhanced Fluorescence
Figure 1
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 1
Figure 3.1
Figure 2
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 1
Figure 4.1
Figure 4.2
Figure 2
Figure 3
Figure 4
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 8.1
Figure 8.2
Scheme 8.1
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 1
Figure 14.5
Figure 14.6
Figure 2
Figure 15.1
Figure 15.2
Figure 15.3
Figure 1
Figure 16.1
Figure 2
Figure 3
Scheme 16.1
Figure 16.2
Scheme 16.2
Figure 16.3
Figure 4
Figure 16.4
Figure 17.1
Figure 17.2
Scheme 17.1
Figure 17.3
Figure 17.4
Figure 17.5
Figure 17.6
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 1
Figure 18.7
Figure 18.8
Figure 2
Figure 18.9
Figure 18.10
Figure 18.11
Figure 18.12
Figure 18.13
Figure 19.1
Figure 19.2
Figure 19.3
Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 20.7
Figure 20.8
Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4
Figure 21.5
Figure 22.1
Figure 22.2
Figure 23.1
Figure 23.2
Figure 23.3
Figure 23.4
Figure 23.5
Figure 23.6
Figure 24.1
Scheme 24.1
Figure 24.2
Figure 24.3
Figure 24.4
Figure 24.5
Figure 24.6
Figure 25.1
Figure 25.2
Figure 25.3
Figure 25.4
Figure 1
Figure 25.5
Figure 25.6
Figure 26.1
Schemes 26.1
Figure 26.2
Figure 26.2
Figure 26.3
Figure 1
Figure 2
Figure 27.1
Scheme 27.1
Scheme 27.2
Figure 27.2
Figure 3
Figure 27.3
Figure 27.4
Scheme 27.3
Scheme 27.4
Table 1.1
Table 2.1
Table 8.1
Table 13.1
Table 13.2
Table 18.1
Table 26.1
Trabocchi, A. (ed.)
Diversity-Oriented Synthesis
Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology
2013
Print ISBN: 978-1-118-14565-4, also available in digital formats
Sierra, M.A., de la Torre, M.C., Cossio, F.P.
More Dead Ends and Detours
En Route to Successful Total Synthesis
2013
Print ISBN: 978-3-527-32976-2
Christmann, M., Bräse, S. (eds.)
Asymmetric Synthesis II
More Methods and Applications
2012
Print ISBN: 978-3-527-32900-7, also available in digital formats
Civjan, N. (ed.)
Chemical Biology
Approaches to Drug Discovery and Development to Targeting Disease
2012
Print ISBN: 978-1-118-10118-6, also available in digital formats
Luisi, P.P. (ed.)
Chemical Synthetic Biology
2011
Print ISBN: 978-0-470-71397-6, also available in digital formats
Waldmann, H., Janning, P. (eds.)
Chemical Biology
Learning through Case Studies
2009
Print ISBN: 978-3-527-32330-2
Edited by Herbert Waldmann and Petra Janning
The Editors
Prof. Dr. Herbert Waldmann
MPI of Molecular Physiology
Otto-Hahn-Str. 11
44227 Dortmund
Germany
Dr. Petra Janning
MPI of Molecular Physiology
Otto-Hahn-Str. 11
44227 Dortmund
Germany
Cover
fotolia.com © Paolo Toscani
We thank Claudia Pieczka, MPI of Molecular Physiology, Dortmund, Germany for preparing the cover illustration.
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33611-1
ePDF ISBN: 978-3-527-67598-2
ePub ISBN: 978-3-527-67600-2
Mobi ISBN: 978-3-527-67599-9
List of Contributors
Hans Aerts
University of Amsterdam
Department of Medical Biochemistry
Academic Medical Centre
Amsterdam
The Netherlands
Albert A. Antolín
Universitat Pompeu Fabra
Systems Pharmacology
Research Program on Biomedical Informatics
IMIM Hospital del Mar Medical Research Institute
Doctor Aiguader 88
Barcelona
Spain
Thomas Beenakker
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Rolf Boot
University of Amsterdam
Department of Medical Biochemistry
Academic Medical Centre
Amsterdam
The Netherlands
Gerjan de Bruin
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Atwood K. Cheung
Novartis Institutes for BioMedical Research, Inc.
Global Discovery Chemistry
Massachusetts Avenue
Cambridge, MA 02139
USA
Jeroen Codée
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Feng Cong
Novartis Institutes for BioMedical Research, Inc.
Developmental and Molecular Pathways
Massachusetts Avenue
Cambridge, MA 02139
USA
Alexander Deiters
University of Pittsburgh
Department of Chemistry
Chevron Science Center
Parkman Avenue
Pittsburgh, PA 15260
USA
Frank J. Dekker
Groningen University
Department of Pharmaceutical Gene Modulation
Antonius Deusinglaan 1
av Groningen
Netherlands
Hans van den Elst
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Bogdan Florea
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Yushi Futamura
RIKEN
Antibiotics Laboratory
2-1 Hirosawa
Wako
Saitama 351-0198
Japan
Warren R. J. D. Galloway
University of Cambridge
Department of Chemistry
Lensfield Road
Cambridge CB2 1 EW
UK
Malte Gersch
Technische Universität München
Department of Chemistry
Lichtenbergstraße 4
Garching
Germany
Paul Geurink
The Netherlands Cancer Institute (NKI)
Division of Cell Biology
Plesmanlaan 121
1066 Amsterdam
The Netherlands
Roger S. Goody
Max Planck Institute of Molecular Physiology
Department of Physical Biochemistry
Otto-Hahn-Straße 11
Dortmund
Germany
Tom N. Grossmann
Chemical Genomics Centre of the Max Planck Society
Otto-Hahn-Straße 15
Dortmund
Germany
Kathy Hadje-Georgiou
University of Cambridge
Department of Chemistry
Lensfield Road
Cambridge CB2 1 EW
UK
Christian Hedberg
Max Planck Institute of Molecular Physiology
Department of Chemical Biology
Otto-Hahn-Straße 11
Dortmund
Germany
Andreas Herrmann
Humboldt University Berlin
Department of Biology
Invalidenstrasse 42
Berlin
Germany
Glenn R. Hicks
University of California
Riverside
Center for Plant Cell Biology and Department of Botany and Plant Sciences
University Avenue
Riverside, CA 92521
USA
Birgit Hoeger
European Molecular Biology Laboratory (EMBL)
Genome Biology Unit
Meyerhofstrasse 1
Heidelberg
Germany
Felix Hövelmann
Humboldt University Berlin
Department of Chemistry
Brook-Taylor-Straße 2
Berlin
Germany
Barbara Imperiali
Massachusetts Institute of Technology
Departments of Biology and Chemistry
68-380, 77 Massachusetts Avenue
Cambridge, MA 02139
USA
Aymelt Itzen
Technische Universität München
Center of Integrated Protein Science Munich
Department Chemie
AG Proteinchemie
Lichtenbergstraße 4
Garching
Germany
Jianbing Jiang
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Markus Kaiser
Universität Duisburg-Essen
Zentrum für Medizinische Biotechnologie
Fakultät für Biologie
Universitätsstrasse 2
Essen
Germany
Wouter Kallemeijn
University of Amsterdam
Department of Medical Biochemistry
Academic Medical Centre
Amsterdam
The Netherlands
Stefan Knapp
University of Oxford
Nuffield Department of Clinical Medicine
Structural Genomics Consortium and Target Discovery Institute
Roosevelt Drive
Oxford OX3 7FZ
UK
Andrea Knoll
Humboldt University Berlin
Department of Chemistry
Brook-Taylor-Straße 2
Berlin
Germany
Maja Köhn
European Molecular Biology Laboratory (EMBL)
Genome Biology Unit
Meyerhofstrasse 1
Heidelberg
Germany
Yasumitsu Kondoh
RIKEN Center for Sustainable Resource Science (CSRS)
Chemical Biology Research Group
2-1 Hirosawa
Wako
Saitama 351-0198
Japan
and
RIKEN
Antibiotics Laboratory
2-1 Hirosawa
Wako
Saitama 351-0198
Japan
Kamal Kumar
Max Planck Institute of Molecular Physiology
Department of Chemical Biology
Otto-Hahn-Straße 11
Dortmund
Germany
Susann Kummer
Universitätsklinikum Heidelberg
Department of Infectiology
Im Neuenheimer Feld 324
Heidelberg
Germany
Luca Laraia
University of Cambridge
Department of Chemistry
Lensfield Road
Cambridge CB2 1 EW
UK
Kah-Yee Li
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Nan Li
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Hannah Lingard
University of Oxford
Nuffield Department of Clinical Medicine
Structural Genomics Consortium and Target Discovery Institute
Roosevelt Drive
Oxford OX3 7FZ
UK
Wouter van der Linden
Standford University
Department of Pathology
School of Medicine
Pasteur Drive
Stanford, CA 94305-5324
USA
Qingyang Liu
North Carolina State University
Department of Chemistry
Yarbrough Drive
Raleigh, NC 27695-8204
USA
Gijs van der Marel
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Jordi Mestres
Universitat Pompeu Fabra
Systems Pharmacology
Research Program on Biomedical Informatics
IMIM Hospital del Mar Medical Research Institute
Doctor Aiguader 88
Barcelona
Spain
Susanne Müller
University of Oxford
Nuffield Department of Clinical Medicine
Structural Genomics Consortium and Target Discovery Institute
Roosevelt Drive
Oxford OX3 7FZ
UK
Makoto Muroi
RIKEN Center for Sustainable Resource Science (CSRS)
Chemical Biology Research Group
2-1 Hirosawa
Wako
Saitama 351-0198
Japan
and
RIKEN
Antibiotics Laboratory
Hirosawa 2-1
Wako
Saitama 351-0198
Japan
Feilin Nie
University of Cambridge
Department of Chemistry
Lensfield Road
Cambridge CB2 1 EW
UK
Julian Oeljeklaus
Universität Duisburg-Essen
Zentrum für Medizinische Biotechnologie
Fakultät für Biologie
Universitätsstrasse 2
Essen
Germany
Hiroyuki Osada
RIKEN Center for Sustainable Resource Science (CSRS)
Chemical Biology Research Group
Hirosawa 2-1
Wako
Saitama 351-0198
Japan
and
RIKEN
Antibiotics Laboratory
Hirosawa 2-1
Wako
Saitama 351-0198
Japan
Herman Overkleeft
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Guillem Paniagua
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Laura B. Peterson
Massachusetts Institute of Technology
Departments of Biology and Chemistry
68-380, 77 Massachusetts Avenue
Cambridge, MA 02139
USA
Natasha V. Raikhel
University of California
Riverside
Center for Plant Cell Biology and Department of Botany and Plant Sciences
University Avenue
Riverside, CA 92521
USA
Daniel Rauh
Technische Universität Dortmund
Fakultät für Chemie und Chemische Biologie
Otto-Hahn-Straße 6
Dortmund
Germany
Shin-ichi Sato
Kyoto University
Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
Kyoto 611-0011
Japan
Tilmann Schneider-Poetsch
RIKEN
Chemical Genetics Laboratory
Hirosawa 2-1
Wako
Saitama 351-0198
Japan
Oliver Seitz
Humboldt University Berlin
Department of Chemistry
Brook-Taylor-Straße 2
Berlin
Germany
Stephan A. Sieber
Technische Universität München
Department of Chemistry
Lichtenbergstraße 4
Garching
Germany
Jeffrey R. Simard
Amgen, Inc.
Binney St.
Cambridge, MA 02142
USA
David R. Spring
University of Cambridge
Department of Chemistry
Lensfield Road
Cambridge CB2 1 EW
UK
Mario van der Stelt
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Gemma Triola
Spanish National Research Council (CSIC)
Institute of Advanced Chemistry of Catalonia (IQAC)
Department of Biomedicinal Chemistry
Jordi Girona 18-26
Barcelona
Spain
Nachiket Vartak
Max Planck Institute of Molecular Physiology
Department of Chemical Biology
Otto-Hahn-Straße 11
Dortmund
Germany
Motonari Uesugi
Kyoto University
Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
Kyoto 611-0011
Japan
and
Kyoto University
Institute for Chemical Research
Uji, Kyoto 611-0011
Japan
Gregory L. Verdine
Harvard University
Departments of Stem Cell & Regenerative Biology
Chemistry & Chemical Biology, and Molecular & Cellular Biology
Cambridge, MA 02138
USA
Martijn Verdoes
Radboud University
Department of Tumor Immunology
Nijmegen Medical Centre
Geert Grooteplein 26/28
GA 6525 Nijmegen
The Netherlands
Bridget K. Wagner
Broad Institute
Center for the Science of Therapeutics
Cambridge Center 3027
Cambridge, MA 02142
USA
Marthe Walvoort
Massachusetts Institute of Technology
Department of Biology
Massachusetts Avenue
Cambridge, MA 02139
USA
Yansong Wang
European Molecular Biology Laboratory (EMBL)
Genome Biology Unit
Meyerhofstrasse 1
Heidelberg
Germany
David Wilcke
University of Cambridge
Department of Chemistry
Lensfield Road
Cambridge CB2 1 EW
UK
Lianne Willems
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Martin Witte
University of Groningen
Stratingh Institute of Chemistry
Bio-Organic Chemistry
Nijenborgh 7
AG 9747 Groningen
The Netherlands
Yaowen Wu
Chemical Genomics Centre of the Max Planck Society
Otto-Hahn-Straße 15
Dortmund
Germany
Bo-Tao Xin
Leiden University
Leiden Institute of Chemistry
Einsteinweg 55
2333 Leiden
The Netherlands
Minoru Yoshida
RIKEN
Chemical Genetics Laboratory
Hirosawa 2-1
Wako
Saitama 351-0198
Japan
Chunhua Zhang
University of California
Riverside
Center for Plant Cell Biology and Department of Botany and Plant Sciences
University Avenue
Riverside, CA 92521
USA
Lei Zhao
Chemical Genomics Centre of the Max Planck Society
Otto-Hahn-Straße 15
Dortmund
Germany
Slava Ziegler
Max Planck Institute of Molecular Physiology
Department of Chemical Biology
Otto-Hahn-Straße 11
Dortmund
Germany
“Chemical Biology may be defined as the application of chemical methods and techniques to the study of biological phenomena, that is, chemical biology research seeks new insights into biology by means of an approach originating from an enabling chemistry tool box.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!