Data Mining Algorithms - Pawel Cichosz - E-Book

Data Mining Algorithms E-Book

Pawel Cichosz

0,0
63,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1177

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Title Page

Copyright

Dedication

Acknowledgements

Preface

Data mining

Motivation

Organization

Notation

R code examples

Website

Further readings

References

Part I: Preliminaries

Chapter 1: Tasks

1.1 Introduction

1.2 Inductive learning tasks

1.3 Classification

1.4 Regression

1.5 Clustering

1.6 Practical issues

1.7 Conclusion

1.8 Further readings

References

Chapter 2: Basic statistics

2.1 Introduction

2.2 Notational conventions

2.3 Basic statistics as modeling

2.4 Distribution description

2.5 Relationship detection

2.6 Visualization

2.7 Conclusion

2.8 Further readings

References

Part II: Classification

Chapter 3: Decision trees

3.1 Introduction

3.2 Decision tree model

3.3 Growing

3.4 Pruning

3.5 Prediction

3.6 Weighted instances

3.7 Missing value handling

3.8 Conclusion

3.9 Further readings

References

Chapter 4: Naïve Bayes classifier

4.1 Introduction

4.2 Bayes rule

4.3 Classification by Bayesian inference

4.4 Practical issues

4.5 Conclusion

4.6 Further readings

References

Chapter 5: Linear classification

5.1 Introduction

5.2 Linear representation

5.3 Parameter estimation

5.4 Discrete attributes

5.5 Conclusion

5.6 Further readings

References

Chapter 6: Misclassification costs

6.1 Introduction

6.2 Cost representation

6.3 Incorporating misclassification costs

6.4 Effects of cost incorporation

6.5 Experimental procedure

6.6 Conclusion

6.7 Further readings

References

Chapter 7: Classification model evaluation

7.1 Introduction

7.2 Performance measures

7.3 Evaluation procedures

7.4 Conclusion

7.5 Further readings

References

Part III: Regression

Chapter 8: Linear regression

8.1 Introduction

8.2 Linear representation

8.3 Parameter estimation

8.4 Discrete attributes

8.5 Advantages of linear models

8.6 Beyond linearity

8.7 Conclusion

8.8 Further readings

References

Chapter 9: Regression trees

9.1 Introduction

9.2 Regression tree model

9.3 Growing

9.4 Pruning

9.5 Prediction

9.6 Weighted instances

9.7 Missing value handling

9.8 Piecewise linear regression

9.9 Conclusion

9.10 Further readings

References

Chapter 10: Regression model evaluation

10.1 Introduction

10.2 Performance measures

10.3 Evaluation procedures

10.4 Conclusion

10.5 Further readings

References

Part IV: Clustering

Chapter 11: (Dis)similarity measures

11.1 Introduction

11.2 Measuring dissimilarity and similarity

11.3 Difference-based dissimilarity

11.4 Correlation-based similarity

11.5 Missing attribute values

11.6 Conclusion

11.7 Further readings

References

Chapter 12: k-Centers clustering

12.1 Introduction

12.2 Algorithm scheme

12.3

k

-Means

12.4 Beyond means

12.5 Beyond (fixed)

k

12.6 Explicit cluster modeling

12.7 Conclusion

12.8 Further readings

References

Chapter 13: Hierarchical clustering

13.1 Introduction

13.2 Cluster hierarchies

13.3 Agglomerative clustering

13.4 Divisive clustering

13.5 Hierarchical clustering visualization

13.6 Hierarchical clustering prediction

13.7 Conclusion

13.8 Further readings

References

Chapter 14: Clustering model evaluation

14.1 Introduction

14.2 Per-cluster quality measures

14.3 Overall quality measures

14.4 External quality measures

14.5 Using quality measures

14.6 Conclusion

14.7 Further readings

References

Part V: Getting Better Models

Chapter 15: Model ensembles

15.1 Introduction

15.2 Model committees

15.3 Base models

15.4 Model aggregation

15.5 Specific ensemble modeling algorithms

15.6 Quality of ensemble predictions

15.7 Conclusion

15.8 Further readings

References

Chapter 16: Kernel methods

16.1 Introduction

16.2 Support vector machines

16.3 Support vector regression

16.4 Kernel trick

16.5 Kernel functions

16.6 Kernel prediction

16.7 Kernel-based algorithms

16.8 Conclusion

16.9 Further readings

References

Chapter 17: Attribute transformation

17.1 Introduction

17.2 Attribute transformation task

17.3 Simple transformations

17.4 Multiclass encoding

17.5 Conclusion

17.6 Further readings

References

Chapter 18: Discretization

18.1 Introduction

18.2 Discretization task

18.3 Unsupervised discretization

18.4 Supervised discretization

18.5 Effects of discretization

18.6 Conclusion

18.7 Further readings

References

Chapter 19: Attribute selection

19.1 Introduction

19.2 Attribute selection task

19.3 Attribute subset search

19.4 Attribute selection filters

19.5 Attribute selection wrappers

19.6 Effects of attribute selection

19.7 Conclusion

19.8 Further readings

References

Chapter 20: Case studies

20.1 Introduction

20.2 Census income

20.3 Communities and crime

20.4 Cover type

20.5 Conclusion

20.6 Further readings

References

Closing

Retrospecting

Final words

A: Notation

A.1 Attribute values

A.2 Data subsets

A.3 Probabilities

B: R packages

B.1 CRAN packages

B.2 DMR packages

B.3 Installing packages

References

C: Datasets

Index

End User License Agreement

Pages

iv

v

xix

xx

xxi

xxii

xxiii

xxiv

xxv

xxvi

xxvii

xxviii

xxix

xxx

xxxi

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

222

221

223

224

225

226

227

228

229

230

231

232

233

234

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

464

465

466

467

463

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

596

595

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

627

626

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

Guide

Cover

Table of Contents

preface

Part I: Preliminaries

Begin Reading

List of Illustrations

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 3.1

Figure 3.2

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 6.1

Figure 6.2

Figure 6.3

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 9.1

Figure 10.1

Figure 10.2

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 13.1

Figure 13.2

Figure 14.1

Figure 14.2

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.5

Figure 16.6

Figure 17.1

Figure 18.1

Figure 18.2

Figure 19.1

Figure 19.2

Figure 19.3

Figure 19.4

Figure 19.5

Figure 19.6

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.6

Figure 20.7

Figure 20.8

Figure 20.9

Figure 20.10

Figure 20.11

Figure 20.12

Figure 20.13

Figure 20.14

Figure 20.15

Figure 20.16

Figure 20.17

Figure 20.18

Figure 20.19

Figure 20.20

Figure 20.21

Figure 20.22

Figure 20.23

List of Tables

Table 6.1

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 17.1

Data Mining Algorithms: Explained Using R

Paweł Cichosz

Department of Electronics and Information TechnologyWarsaw University of TechnologyPoland

 

This edition first published 2015

© 2015 by John Wiley & Sons, Ltd

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Cichosz, Pawel, author.

Data mining algorithms : explained using R / Pawel Cichosz.

pages cm

Summary: “This book narrows down the scope of data mining by adopting a heavily modeling-oriented perspective” –Provided by publisher.

Includes bibliographical references and index.

ISBN 978-1-118-33258-0 (hardback)

1. Data mining. 2. Computer algorithms. 3. R (Computer program language) I. Title.

QA76.9.D343C472 2015

006.3′12–dc23

2014036992

A catalogue record for this book is available from the British Library.

ISBN: 9781118332580

To my wife, Joanna, and my sons, Grzegorz and Łukasz

Acknowledgements

With the rise and rapidly growing popularity of online idea sharing methods, such as blogs and wikis, traditional books are no longer the only way of making large portions of text available to a wide audience. The former are particularly suitable for collaborative or social writing and readings undertakings, often with mixed reader–writer roles of particular participants. For individual writing and reading efforts the traditional book form (although not necessarily tied to the paper media) still remains the best approach. On one hand, it clearly assigns full and exclusive responsibility for the contents to the author, with no easy excuses for errors and other deficiencies. On the other hand, there are several other people engaged in the publishing process who help to give the book its final shape and protect the audience against a totally flawed work.

As the author of this book, I feel indeed totally responsible for all its imperfections, only some which I am aware of, but I have no doubts that there are many more of them. With that being said, several people from the editorial and production team worked hard to make the imperfect outcome of my work worth publishing. My thanks go, in particular, to Richard Davies, Prachi Sinha Sahay, Debbie Jupe, and Kay Heather from Wiley for their encouragement, support, understanding, and reassuring professionalism at all stages of writing and production. Radhika Sivalingam, Lincy Priya, and Yogesh Kukshal did their best to transform my manuscript into a real book, meeting publication standards. I believe there are others who contributed to this book's production that I am not even aware of and I am grateful to them all, also.

I was thoughtless enough to share my intention to write this book with my colleagues from the Artificial Intelligence Applications Research Group at the Warsaw University of Technology. While their warm reception of this idea and constant words of encouragement were extremely helpful, I wished I had not done that many times. It would have been so much easier to give up if I had kept this in secret. Perhaps the ultimate reason why I continued to work despite hesitations is that I knew they would keep asking and I would be unable to find a good excuse. Several thoughts expressed in this book were shaped by discussions during our group's seminar meetings. Interacting with my colleagues from the analytics teams at Netezza Poland, IBM Poland, and iQor Poland, with which I had an opportunity to work on some data mining projects at different stages of writing the book, was also extremely stimulating, although the contents of the book have no relationships with the projects I was involved with.

I owe special thanks to my wife and two sons, who did not directly contribute to the contents of this book, but made it possible by allowing me to spend much of my time that should be normally devoted to them on this work and providing constant encouragement. If you guys can read these thanks in a published copy of the book, then it means it is all over at last and we will hopefully get back to normal life.

Preface

Data mining

Data mining has been a rapidly growing field of research and practical applications during the last two decades. From a somewhat niche academic area at the intersection of machine learning and statistics it has developed into an established scientific discipline and a highly valued branch of the computing industry. This is reflected by data mining becoming an essential part of computer science education as well as the increasing overall awareness of the term “data mining” among the general (not just computing-related) academic and business audience.

Scope

Various definitions of data mining may be found in the literature. Some of them are broad enough to include all types of data analysis, regardless of the representation and applicability of their results. This book narrows down the scope of data mining by adopting a heavily modeling-oriented perspective. According to this perspective the ultimate goal of data mining is delivering predictive models. The latter can be thought of as computationally represented chunks of knowledge about some domain of interest, described by the analyzed data, that are capable of providing answers to queries transcending the data, i.e., such that cannot be answered by just extracting and aggregating values from the data. Such knowledge is discovered from data by capturing and generalizing useful relationship patterns that occur therein.

Activities needed for creating predictive models based on data and making sure that they meet the application's requirements fall in the scope of data mining as understood in this book. Analytical activities which do not contribute to model creation—although they may still deliver extremely useful results—remain therefore beyond the scope of our interest. This still leaves a lot of potential contents to be covered, including not only modeling algorithms, but also techniques for evaluating the quality of predictive models, transforming data to make modeling algorithms easier to apply or more likely to succeed, selecting attributes most useful for model creation, and combining multiple models for better predictions.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!