Design of Microwave Active Devices -  - E-Book

Design of Microwave Active Devices E-Book

0,0
144,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book presents methods for the design of the main microwave active devices. The first chapter focuses on amplifiers working in the linear mode. The authors present the problems surrounding narrowband and wideband impedance matching, stability, polarization and the noise factor, as well as specific topologies such as the distributed amplifier and the differential amplifier. Chapter 2 concerns the power amplifier operation. Specific aspects on efficiency, impedance matching and class of operation are presented, as well as the main methods of linearization and efficiency improvement. Frequency transposition is the subject of Chapter 3. The author presents the operating principle as well as the different topologies using transistors and diodes. Chapter 4 is dedicated to the operation of fixed frequency and tunable oscillators such as the voltage controlled oscillator (VCO) and the yttrium iron garnet (YIG). The final chapter presents the main control functions, i.e. attenuators, phase shifters and switches.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 284

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Chapter 1 Amplification in Linear Mode

1.1. Principles of microwave amplification

1.2. Narrowband amplifiers with maximum gain.

1.3. Low-noise narrowband amplifier

1.4. Specific configurations for transistors

1.5. Wideband amplification.

1.6. Differential amplifier

1.7. Bibliography

Chapter 2 Power Amplification

2.1. Characteristics of power amplifiers.

2.2. Analysis of the operation of a power amplifier

2.3. Classes of operation.

2.4. Architectures of power amplifiers.

2.5. Design example of an amplifier in class B

2.6. Linearization and efficiency improvement

2.7. Bibliography

Chapter 3 Frequency Transposition

3.1. Operating principles.

3.2. Mixer characteristics

3.3. Simple mixer operation

3.4. Balanced mixer topologies

3.5. Topology of passive and active mixers.

3.6. Frequency multipliers

3.7. Bibliography

Chapter 4 Oscillators.

4.1. Operating principles.

4.2. Analysis of one-port circuit-type oscillators.

4.3. Oscillator characteristics.

4.4. Impedance with a negative resistive component

4.5. Fixed-frequency oscillators

4.6. Electronically tunable oscillators

4.7. Bibliography

Chapter 5 Control Functions

5.1. Semiconductor components for control functions

5.2. Variable attenuators.

5.3. Variable phase shifters

5.4. Switches

5.5. Bibliography

Appendix 1 Lossless Two-Port Network: Mismatching

Appendix 2 Noise in a Balanced Amplifier

Appendix 3 Specific Topologies with Transistors.

A3.1. Common-grid and common-drain topologies

A3.2. Cascade association of 2 two-port networks

Appendix 4 Wideband Impedance Matching: Reactive Two-Port Networks

A4.1. Use of filters’ theory

A4.2. Darlington’s equivalences

A4.3. Applying Darlington’s equivalences to the impedance-matching circuits

A4.4. Implementation with complex impedance-matching

A4.5. Synthesis methodology

Appendix 5 Wideband Impedance Matching: Dissipative Two-Port Networks.

A5.1. Series-RC circuit

A5.2. Parallel-RC circuit

Appendix 6 Wideband Amplification: Parallel Resistive Feedback

Appendix 7 Graphical Method.

A7.1. Constant SijT modulus and argument circles

A7.2. Constant maximum transducer power gain circles

Appendix 8 Distributed Amplifier.

A8.1. Analysis of the grid line

A8.2. Study of the drain line

A8.3. Study of the amplifier

Appendix 9 Differential Amplifier.

A9.1. Differential operation of a four-port network

A9.2. Symmetrical four-port network

A9.3. Purely differential operation mode

Appendix 10 Third-order Intermodulation

A10.1. Compression–intermodulation relationship

A10.2. Amplifier cascade intermodulation

List of Authors

Index

First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.com

© ISTE Ltd 2014

The rights of Jean-Luc Gautier to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2014931647

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-84821-630-3

Chapter 1

Amplification in Linear Mode

Chater written by Jean-Luc GAUTIER and Sébastien QUINTANEL.

1.1. Principles of microwave amplification

An amplifier is a device used to convert some of the power supplied by a direct current (DC) signal from a continuous power source into alternating current (AC) power at the frequency of the microwave signal applied on the input. It consists of the following elements:

– active components used for the amplification of the signal, such as bipolar (HBTs, etc.) and field-effect (MESFETs, HEMTs, etc.) transistors;
– passive components used for the polarization and impedance matching networks, such as transmission line segments, resistors, inductors an d capacitors.

Figure 1.1.Principle of amplification

It is possible to essentially classify microwave amplifiers according to various criteria, although this list is not exhaustive:

– Output power:
- low power: output power of a few tens of mW, operating in linear mode;
- medium power: output power ranging from a few hundred mW to a few W, essentially operating in nonlinear mode;
- high power: output power greater than a few W, operating in nonlinear mode, taking the phenomena of power dissipation into account.
– Frequency band of operation:
- narrowband: relative bandwidth a percentage of several tens %;
- wideband: in the order of an octave;
- ultra-wideband: in the order of a decade.
– Noise factor.

1.1.1. Characteristics of an amplifier in linear mode

The linear dynamic operation of an amplifier can be represented by the circuit diagram shown in Figure 1.2.

Figure 1.2.Diagram of the linear amplifier principle

The impedance value of the generator and the load is standardized and generally equal to 50 Ω.

The essential characteristic values of an amplifier are:

– Power gain: the most commonly used parameter is transducer power gain, which is expressed in dB and defined as the ratio of dissipated power in the load and the power available at the generator terminals. This value is often supplemented by the gain ripple in the bandwidth.

G0 ± ΔG in dB

– The input and output impedances, generally represented by their reflection coefficients normalized in relation to 50 Ω.

The port reflection coefficient is usually expressed in dB and sometimes as a standing wave ratio (SWR).

– The frequency band of operation, which is usually limited by the conditions for impedance matching, i.e. the frequency band in which the port reflection coefficient is less than a given value, for example, −15 dB. This frequency band is either characterized by a relative value that is normalized to the central frequency f0 and , or by the ratio between the maximum and minimum frequency .

Figure 1.3 shows the gain and matching curves defining the circuit bandwidth.

Figure 1.3.Linear characteristics of an amplifier

– The noise factor F, which is expressed in dB, if it is included in the technical specifications. It determines the noise floor of the amplifier, expressed in dBm, which is the minimum input power such that the signal level is above the noise level: Δf:Amplifier bandwidthTE:Equivalent noise temperature of input loadTA:Additional noise temperature of amplifier

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!