Developments in Electrochemistry -  - E-Book

Developments in Electrochemistry E-Book

4,9
85,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Martin Fleischmann was truly one of the 'fathers' of modern electrochemistry having made major contributions to diverse topics within electrochemical science and technology. These include the theory and practice of voltammetry and in situ spectroscopic techniques, instrumentation, electrochemical phase formation, corrosion, electrochemical engineering, electrosynthesis and cold fusion. While intended to honour the memory of Martin Fleischmann, Developments in Electrochemistry is neither a biography nor a history of his contributions. Rather, the book is a series of critical reviews of topics in electrochemical science associated with Martin Fleischmann but remaining important today. The authors are all scientists with outstanding international reputations who have made their own contribution to their topic; most have also worked with Martin Fleischmann and benefitted from his guidance. Each of the 19 chapters within this volume begin with an outline of Martin Fleischmann's contribution to the topic, followed by examples of research, established applications and prospects for future developments. The book is of interest to both students and experienced workers in universities and industry who are active in developing electrochemical science.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 824

Veröffentlichungsjahr: 2014

Bewertungen
4,9 (18 Bewertungen)
16
2
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Developments in Electrochemistry

Science Inspired by Martin Fleischmann

Editors

DEREK PLETCHER

Chemistry, University of Southampton, UK

ZHONG-QUN TIAN

State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, China

DAVID E. WILLIAMS

School of Chemical Sciences, University of Auckland, New Zealand

This edition first published 2014

© 2014 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data applied for.

A catalogue record for this book is available from the British Library.

ISBN: 9781118694435

Contents

List of Contributors

1 Martin Fleischmann – The Scientist and the Person

Note

The Publications of Martin Fleischmann

2 A Critical Review of the Methods Available for Quantitative Evaluation of Electrode Kinetics at Stationary Macrodisk Electrodes

2.1 DC Cyclic Voltammetry

2.2 AC Voltammetry

2.3 Experimental Studies

2.4 Conclusions and Outlook

Notes

References

3 Electrocrystallization: Modeling and Its Application

3.1 Modeling Electrocrystallization Processes

3.2 Applications of Models

3.3 Summary and Conclusions

References

4 Nucleation and Growth of New Phases on Electrode Surfaces

4.1 An Overview of Martin Fleischmann's Contributions to Electrochemical Nucleation Studies

4.2 Electrochemical Nucleation with Diffusion-Controlled Growth

4.3 Mathematical Modeling of Nucleation and Growth Processes

4.4 The Nature of Active Sites

4.5 Induction Times and the Onset of Electrochemical Phase Formation Processes

4.6 Conclusion

References

5 Organic Electrosynthesis

5.1 Indirect Electrolysis

5.2 Intermediates for Families of Reactions

5.3 Selective Fluorination

5.4 Two-Phase Electrolysis

5.5 Electrode Materials

5.6 Towards Pharmaceutical Products

5.7 Future Prospects

References

6 Electrochemical Engineering and Cell Design

6.1 Principles of Electrochemical Reactor Design

6.2 Decisions During the Process of Cell Design

6.3 The Influence of Electrochemical Engineering on the Chlor-Alkali Industry

6.4 Parallel Plate Cells

6.5 Redox Flow Batteries

6.6 Rotating Cylinder Electrode Cells

6.7 Conclusions

References

7 Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): Early History, Principles, Methods, and Experiments

7.1 Early History of Electrochemical Surface-Enhanced Raman Spectroscopy

7.2 Principles and Methods of SERS

7.3 Features of EC-SERS

7.4 EC-SERS Experiments

Acknowledgments

References

8 Applications of Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS)

8.1 Pyridine Adsorption on Different Metal Surfaces

8.2 Interfacial Water on Different Metals

8.3 Coadsorption of Thiourea with Inorganic Anions

8.4 Electroplating Additives

8.5 Inhibition of Copper Corrosion

8.6 Extension of SERS to the Corrosion of Fe and Its Alloys: Passivity

8.7 SERS of Corrosion Inhibitors on Bare Transition Metal Electrodes

8.8 Lithium Batteries

8.9 Intermediates of Electrocatalysis

Acknowledgments

References

9

In-Situ

Scanning Probe Microscopies: Imaging and Beyond

9.1 Principle of

In-Situ

STM and

In-Situ

AFM

9.2

In-Situ

STM Characterization of Surface Electrochemical Processes

9.3

In-Situ

AFM Probing of Electric Double Layer

9.4 Electrochemical STM Break-Junction for Surface Nanostructuring and Nanoelectronics and Molecular Electronics

9.5 Outlook

References

10

In-Situ

Infrared Spectroelectrochemical Studies of the Hydrogen Evolution Reaction

10.1 The H

+

/H

2

Couple

10.2 Single-Crystal Surfaces

10.3 Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopy

10.4 Surface-Enhanced Raman Spectroscopy

10.5 Surface-Enhanced IR Absorption Spectroscopy

10.6

In-Situ

Sum Frequency Generation Spectroscopy

10.7 Spectroscopy at Single-Crystal Surfaces

10.8 Overall Conclusions

References

11 Electrochemical Noise: A Powerful General Tool

11.1 Instrumentation

11.2 Applications

11.3 Conclusions

References

12 From Microelectrodes to Scanning Electrochemical Microscopy

12.1 The Contribution of Microelectrodes to Electroanalytical Chemistry

12.2 Scanning Electrochemical Microscopy (SECM)

12.3 Conclusions

References

13 Cold Fusion After A Quarter-Century: The Pd/D System

13.1 The Reproducibility Issue

13.2 Palladium–Deuterium Loading

13.3 Electrochemical Calorimetry

13.4 Isoperibolic Calorimetric Equations and Modeling

13.5 Calorimetric Approximations

13.6 Numerical Integration of Calorimetric Data

13.7 Examples of Fleischmann's Calorimetric Applications

13.8 Reported Reaction Products for the Pd/D System

13.9 Present Status of Cold Fusion

Acknowledgments

Notes

References

14

In-Situ

X-Ray Diffraction of Electrode Surface Structure

14.1 Early Work

14.2 Synchrotron-Based

In-Situ

XRD

14.3 Studies Inspired by Martin Fleischmann's Work

14.4 Conclusions

References

15 Tribocorrosion

15.1 Introduction and Definitions

15.2 Particle–Surface Interactions

15.3 Depassivation and Repassivation Kinetics

15.4 Models and Mapping

15.5 Electrochemical Monitoring of Erosion–Corrosion

15.6 Tribocorrosion within the Body: Metal-on-Metal Hip Joints

15.7 Conclusions

Acknowledgments

References

16 Hard Science at Soft Interfaces

16.1 Charge Transfer Reactions at Soft Interfaces

16.2 Electrocatalysis at Soft Interfaces

16.3 Micro- and Nano- Soft Interfaces

16.4 Plasmonics at Soft Interfaces

16.5 Conclusions and Future Developments

References

17 Electrochemistry in Unusual Fluids

17.1 Electrochemistry in Plasmas

17.2 Electrochemistry in Supercritical Fluids

17.3 Conclusions

Acknowledgments

Notes

References

18 Aspects of Light-Driven Water Splitting

18.1 A Very Brief History of Semiconductor Electrochemistry

18.2 Thermodynamic and Kinetic Criteria for Light-Driven Water Splitting

18.3 Kinetics of Minority Carrier Reactions at Semiconductor Electrodes

18.4 The Importance of Electron–Hole Recombination

18.5 Fermi Level Splitting in the Semiconductor–Electrolyte Junction

18.6 A Simple Model for Light-Driven Water-Splitting Reaction

18.7 Evidence for Slow Electron Transfer During Light-Driven Water Splitting

18.8 Conclusions

Acknowledgments

Notes

References

19 Electrochemical Impedance Spectroscopy

19.1 Theory

19.2 The Point Defect Model

19.3 The Passivation of Copper in Sulfide-Containing Brine

19.4 Summary and Conclusions

Acknowledgments

References

Index

End User License Agreement

List of Tables

Chapter 2

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Chapter 3

Table 3.1

Chapter 6

Table 6.1

Table 6.2

Chapter 7

Table 7.1

Chapter 8

Table 8.1

Chapter 12

Table 12.1

Chapter 17

Table 17.1

Table 17.2

Chapter 19

Table 19.1

Table 19.2

Table 19.3

List of Illustrations

Chapter 2

Figure 2.1

Schematic representation of a three-electrode cell configuration comprising a macrodisk working electrode (constructed from Pt, Au, carbon, etc.) reference electrode (e.g., Ag/AgCl) and an auxiliary electrode (e.g., Pt mesh). In configuration (A), diffusion (planar plus radial) towards a macrodisk electrode is illustrated with a conventional working electrode design. In configuration (B), the macrodisk working electrode is installed inside a tube to remove edge (radial) diffusion.

Figure 2.2

In DC cyclic voltammetry, the potential is swept from E

st

to switching potential E

sw1

and to the final (E

fin

) or second switching potential (E

sw2

), etc.

Figure 2.3

DC cyclic voltammograms (v = 0.10 V s

−1

) for: (a) reversible (k

0

 = 10

4

 cm s

−1

); (b) quasi-reversible (k

0

 = 10

−3

 cm s

−1

); (c) electrochemically irreversible (k

0

 = 10

–6

 cm s

–1

); and (d) chemically irreversible (k

0

 = 10

4

 cm s

−1

; k

f

 = 10

5

 s

−1

; k

b

 = 0 s

−1

) one-electron charge transfer processes. Simulations are based on Equation (2.1) and use of the BV formalism for electron transfer with α = 0.50. Other parameters: E

0

 = 0.000 V; C

R

0

 = 1.0 mM; C

O

0

 = 0.0 mM; all D = 1.0 × 10

–5

 cm

2

 s

–1

; A = 0.07 cm

2

; R

u

 = 0 Ω; C

DL

 = 0 μF cm

−2

; T = 298 K.

Figure 2.4

Concentration dependence (C

R

0

 = 0.1 (a), 1 (b) and 10 mM (c)) of the profile of DC cyclic voltammogram (v = 0.10 V s

−1

) for a reversible process (k

0

 = 10

4

 cm s

−1

), with R

u

 = 0 (---) and R

u

 = 500 Ω (– – –), and for a quasi-reversible process (k

0

 = 0.012 cm s

−1

) with R

u

 = 0 (– · – ·). Other parameters are as in Figure 2.3. Note that (---) and (– – –) examples as well as (– – –) and (– · – ·) are almost indistinguishable in (a) and (b), respectively, unlike in (c).

Figure 2.5

Influence of C

DL

(40 μF cm

−2

) on the profile of DC cyclic voltammograms with C

R

0

 = 0.1 mM as a function of the scan rate. v = 0.1 (a), 1 (b) and 10 V s

−1

(c) for a reversible process (k = 10 cm s) with R = 0 (---) and 500 Ω (– – –). Other parameters used in this simulation are as in Figure 2.3.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!