Efficiently Studying Organic Chemistry - Eberhard Breitmaier - E-Book

Efficiently Studying Organic Chemistry E-Book

Eberhard Breitmaier

0,0
39,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Study the essentials of organic chemistry efficiently! This e-book for bachelor and master students facilitates effective learning and is renowned for the quality of its content: 85 short chapters present each topic concisely, including questions for self-examination. Based on the author's long teaching experience, this book has been developed from lecture scripts of courses held in the USA and in Germany. It comprises the molecular orbital model to explain covalent bonding in organic molecules, the classes of organic compounds including natural products, polymers and biopolymers, basic concepts (orbital hybridization, resonance, aromaticity), types and mechanisms of organic reactions, and essential aspects of molecular structure such as atom connectivities, skeletal isomerism, conformation, configuration and chirality. The updated 2nd edition includes 4 new chapters on Selectivity and Specificity of Organic Reactions, Planning Organic Syntheses, Carbon-13 NMR, and two-dimensional NMR.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB

Seitenzahl: 474

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Contents

Preface

Organic Chemistry

1 Atomic Orbitals, Electronic Configurations

1.1 Atomic Orbitals

1.2 s and p Orbitals

1.3 Electron Spin and PAULI Principle

1.4 Electronic Configuration of Light Atoms

2 Covalent Bonding

2.1 Kinds of Chemical Bond

2.2 Covalent Bonding by Overlapping of Atomic Orbitals

2.3 Overlapping of p Orbitals

3 Hybridization of Atomic Orbitals

3.1 Geometry of the Methane Molecule

3.2 Hybridization of Atomic Orbitals

3.3 Carbon-Hydrogen Bonding in Methane

4 Covalent Carbon-Carbon Bonding

4.1 Ethane, CC Single Bond

4.2 Ethene, CC Double Bond

4.3 Ethyne, CC Triple Bond

5 Alkanes

5.1 Homologous Series of Alkanes

5.2 Natural Sources and Preparation

5.2.1 Distillation of Petroleum

5.2.2 Catalytic Hydrogenation of Alkenes

5.2.3 WURTZ Synthesis Involving Alkylsodium

5.2.4 KOLBE Electrolysis of Carboxylates (Anodic Oxidation)

5.3 Alkanes as an Energy Source

6 Skeletal Structure, Structural Isomerism

6.1 Two and More Structures for One Molecular Formula

6.2 Skeletal Isomerism

7 Basic Rules of Nomenclature

7.1 IUPAC Rules

7.2 Branched Alkyl Groups

8 Drawing Molecular Structures

8.1 Structural Formulas

8.2 Skeletal Formulas

8.3 LEWIS Formulas

8.4 Projections

8.4.1 FISCHER Projection

8.4.2 NEWMAN Projection

9 Conformation

9.1 Conformation, Conformers

9.2 Energy Contents and Nomenclature of Conformers

10 Reactive Intermediates

10.1 Radicals

10.2 Carbenium Ions and Carbanions

10.3 Carbenes

11 Basic Types of Organic Reactions

11.1 Addition

11.2 Elimination

11.3 Oxidation

11.4 Reduction

11.5 Substitution

11.6 Rearrangement

12 Energy Turnover of Chemical Reactions

12.1 Heat of Reaction, Activation Energy

12.2 Catalysis

12.3 Kinetic and Thermodynamic Control

13 Radical Substitution

13.1 Photohalogenation of Alkanes

13.2 Relative Stability of Alkyl Radicals

13.3 Regioselectivity of Radical Substitution

13.4 Radical Sulfochlorination and Nitration

14 Alkenes, Skeletal and Configurational Isomers

14.1 Nomenclature and Structural Isomerism

14.2 Relative Configuration

15 Synthesis of Alkenes

15.1 β-Elimination

15.1.1 Dehydrohalogenation of Haloalkanes

15.1.2 Dehydration of Alcohols

15.1.3 Reductive Dehalogenation of 1,2-Dihaloalkanes

15.2 Alternative Syntheses

15.2.1 Dehydrogenation of Alkanes

15.2.2 Partial Hydrogenation of Alkynes

15.2.3 Reductive Coupling of Carbonyl Compounds

15.2.4 Carbonyl Alkenylations

15.3 Transformation of Alkenes

15.3.1 WOHL-ZIEGLER Bromination

15.3.2 HECK Reaction

15.3.3 Ene Reaction

15.3.4 Alkene Metathesis

16 Additions to Alkenes

16.1 Addition of Hydrogen (Catalytic Hydrogenation)

16.2 Addition of Bromine (Bromination)

16.3 Electrophilic Addition of Hydrogen Halide (Hydrohalogenation)

16.4 Electrophilic Addition of Water (Hydration)

16.5 Halohydrin Formation

16.6 Hydroboration

16.7 Dihydroxylations

16.8 1,3-Dipolar Cycloaddition of Ozone (Ozonolysis)

17 Dienes

17.1 Cumulation and Conjugation of Double Bonds

17.2 Molecular Structure

17.2.1 Conformation of 1,3-Butadiene

17.2.2 Bond Lengths and Resonance Formulas of 1,3-Butadiene

17.2.3 Molecular Shape of Allene

17.3 Preparation

17.3.1 Catalytic Dehydrogenation of Alkanes to 1,3-Dienes

17.3.2 Dehydration of Diols to 1,3-Dienes

17.3.3 Catalytic Dimerization of Ethyne to 1,3-Butadiene

17.3.4 1,2-Dienes by Elimination

18 Additions and Cycloadditions with 1,3-Dienes

18.1 1,2- and 1,4-Addition

18.2 Cycloadditions

18.2.1 [4+2]-Cycloaddition (DIELS-ALDER Reaction)

18.2.2 [4+1]-Cycloaddition

19 Alkynes

19.1 Homologous Series, Structural Isomerism, Nomenclature

19.2 Preparation

19.2.1 Partial Oxidation of Methane to Ethyne

19.2.2 Carbide Process

19.2.3 Double Dehydrohalogenation of 1,1- or 1,2-Dihaloalkanes

19.2.4 Alkylation of Terminal Alkynes

19.3 Typical Reactions

19.3.1 Hydrogenation and Reduction

19.3.2 Hydroboration

19.3.3 Electrophilic Addition of Halogens

19.3.4 Electrophilic Addition of HX

19.3.5 CH Acidity of Terminal Alkynes, Alkynylides

19.3.6 Oxidative Coupling of Terminal Alkynes

19.3.7 Cyclotri- and Cyclotetramerization

20 Cycloalkanes

20.1 Nomenclature

20.2 Conformation

20.2.1 Cyclopropane

20.2.2 Cyclobutane

20.2.3 Cyclopentane

20.2.4 Cyclohexane

20.3 Configurational Isomerism

20.3.1 cis- and trans- Disubstituted Cycloalkanes

20.3.2 cis- and trans-Decalin

20.3.3 Cycloalkenes

21 Basic Syntheses of Cycloalkanes and Cycloalkenes

21.1 Cyclopropane

21.2 Cyclobutane

21.3 Cyclopentene, Cyclopentane

21.4 Cyclohexane, Cyclohexene

21.5 Cycloheptadiene, Cycloheptane

21.6 Larger Rings

22 Reactions of Cycloalkanes and Cycloalkenes

22.1 Reactions Driven by the Strain of Small Rings

22.2 Alkane-like Reactions

22.3 Alkene-like Reactions

22.3.1 Addition of Bromine

22.3.2 Catalytic Hydrogenation

22.3.3 Dihydroxylations

23 Benzene, Aromaticity, Aromatic Compounds

23.1 Structure of Benzene

23.1.1 Molecular Shape

23.1.2 Heat of Hydrogenation

23.1.3 Resonance Energy and Stabilization, Canonical Formulas

23.2 Molecular Orbital Model of Benzene

23.3 Criteria of Aromaticity

24 Benzenoid Aromatic Compounds

24.1 Monosubstituted Benzenes

24.2 Multiply Substituted Benzenes

24.3 Preparation of Benzenoid Hydrocarbons

24.3.1 Fossil Sources

24.3.2 Cyclotrimerization of Alkynes

25 Electrophilic Substitution of Benzene

25.1 Substituted Benzenes by Electrophilic Substitution: Mechanism

25.2 Electrophilic Halogenation

25.3 Electrophilic Alkylation (FRIEDEL-CRAFTS Alkylation)

25.4 Electrophilic Acylation (FRIEDEL-CRAFTS Acylation)

25.5 Electrophilic Nitration

25.6 Electrophilic Sulfonation

26 Electrophilic Second Substitution of Benzenes

26.1 Resonance Effects of Substituents at the Benzene Ring

26.2 Regioselectivity of Electrophilic Second Substitution of Benzenes

27 Other Reactions of Benzenoid Aromatics

27.1 Nucleophilic Substitution at the Benzenoid Ring

27.2 Radical Substitution at the Side Chain

27.3 Hydrogenation, Reduction, Oxidation

28 Polycyclic Benzenoid Aromatic Compounds

28.1 Fusion of Benzenoid Rings

28.2 Preparation of Aromatic Polycycles

28.3 Electrophilic Substitution of Naphthalene

28.4 Oxidation and Reduction of Naphthalene

28.5 Reactions of Anthracene and Phenanthrene

28.6 Enzymatic Epoxidation of Benzo[a]pyrene

29 Non-benzenoid Aromatic Compounds

29.1 Non-benzenoid Aromatic Ions

29.1.1 Cyclopropenium Cation

29.1.2 Cyclopentadienide Anion

29.1.3 Cycloheptatrienium Cation

29.2 [n]Annulenes

30 Alkyl Halides

30.1 Classification, Nomenclature

30.2 Preparation

30.2.1 Radical Substitution of Alkyl Groups

30.2.2 Addition of Hydrogen Halides and Halogens to Alkenes

30.2.3 Substitution of Hydroxide in Alcohols by Halide

30.2.4 Fluorination with Antimony Trifluoride

30.2.5 Nucleophilic Iodination of Alkyl Halides (FINKELSTEIN Reaction)

30.3 Electronegativity and the Inductive Effect

30.4 Typical Reactions

30.4.1 Nucleophilic Substitution of Halide in Haloalkanes

30.4.2 Dehydrohalogenation (β-Elimination)

30.4.3 Metalation

31 Mechanisms of Nucleophilic Substitution

31.1 Bimolecular Nucleophilic Substitution (Second-Order)

31.2 Monomolecular Nucleophilic Substitution (First-Order)

32 Organometal Compounds

32.1 General Survey

32.2 Preparation

32.2.1 Metalation of Alkyl and Aryl Halides

32.2.2 Transmetalation

32.2.3 Halogen-Metal Exchange

32.2.4 Hydrogen-Metal Exchange

32.3 Preparative Significance

33 Alcohols

33.1 Nomenclature, Classification

33.2 Structure and Physical Properties

33.3 Preparation

33.3.1 Industrial Syntheses of Methanol and Ethanol

33.3.2 Alcoholic Fermentation (Beer, Wine, Distillates)

33.3.3 Hydration of Alkenes

33.3.4 Hydroboration of Alkenes and Oxidation of Trialkylboranes

33.3.5 Reduction of Carbonyl Compounds by Complex Metal Hydrides

33.3.6 Nucleophilic Substitution of Alkyl Halides

33.3.7 Addition of Alkylmagnesium Halides to Carbonyl Compounds

34 Diols, Triols

34.1 Preparation

34.1.1 Dihydroxylation of Alkenes

34.1.2 Hydrolysis of Halohydrins

34.1.3 Bimolecular Reduction of Carbonyl Compounds

34.2 Oxidative Cleavage of Glycols

35 Reactions of Alcohols

35.1 Basicity and Acidity

35.2 Oxidation

35.3 Nucleophilic Substitution

35.4 Esterification

36 Dehydration of Alcohols

36.1 Dehydration of Alcohols to Alkenes

36.2 Dehydration of Fully Alkylated 1,2-Diols to Ketones

37 Ethers

37.1 Nomenclature

37.2 Structure and Physical Properties

37.3 Preparation

37.3.1 Bimolecular Dehydration of Alcohols

37.3.2 Alkoxylation of Alkyl Halides (WILLIAMSON Synthesis)

37.4 Typical Reactions

37.4.1 Formation of Oxonium Salts

37.4.2 Autoxidation (Insertion of Oxygen)

37.4.3 Cleavage of Ethers

38 Amines

38.1 Nomenclature, Classification

38.2 Molecular Shape

38.3 Preparation

38.3.1 Alkylation of Ammonia

38.3.2 Primary Amines by Alkylation of Potassium Phthalimide

38.3.3 Primary Amines by Reduction of Nitriles and Nitro Compounds

39 Reactions of Amines

39.1 Basicity of Alkyl- and Arylamines

39.2 Diazotization of Primary Amines

39.3 N-Nitrosation of Secondary Amines

39.4 Exhaustive Alkylation of Amines

39.5 HOFMANN Elimination of Tetraalkylammonium Hydroxides

39.6 Imines from Primary Amines and Carbonyl Compounds

39.7 Enamines from Secondary Amines and Carbonyl Compounds

39.8 Reductive Amination of Carbonyl Compounds to Amines

40 Diazo and Azo Compounds

40.1 Arenediazonium Salts and Azo Dyes

40.2 Azoalkanes

40.3 Diazoalkanes

41 Carboxylic Acids

41.1 Survey, Nomenclature

41.2 Carboxy Group: Bonding and Resonance Formulas

41.3 Carboxylic Acid Dimers

41.4 Preparation

41.4.1 Carbonylation

41.4.2 Carboxylation

41.4.3 Oxidation of Methyl, Hydroxymethyl, and Aldehyde Groups

41.4.4 Hydrolysis of Carboxylic Acid Derivatives

41.5 Acidity

42 Carboxylic Acid Derivatives

42.1 Carboxylic Acid Esters

42.2 Carboxylic Acid Halides (Acyl Halides)

42.3 Carboxylic Acid Anhydrides

42.4 Carboxylic Acid Amides, Cyclic Imides

42.5 Hydrazides, Hydroxamic Acids, Azides

42.6 Change of the Carboxy Function

42.6.1 Reduction to Primary Alcohols and Aldehydes

42.6.2 Reductive Coupling of Esters (Acyloin Reaction)

42.6.3 Decarboxylation

42.6.4 Dehydration of Carboxamides to Nitriles and Isonitriles

43 Substituted Carboxylic Acids

43.1 Nomenclature

43.2 Halo Acids

43.2.1 Preparation

43.2.2 Reactions

43.3 Hydroxy Acids

43.3.1 Preparation

43.3.2 Reactions

44 Absolute Configuration

44.1 Stereogenic Center, Enantiomers, Chirality

44.2 Optical Activity and Specific Rotation

44.3 Specification of the Absolute Configuration

44.3.1 CAHN-INGOLD-PRELOG Convention [(R)- and (S)-Descriptors]

44.3.2 FISCHER Convention (D- and L-Descriptors)

44.3.3 Correlation of D,L and R, S Descriptors

44.3.4 Racemates and Their Resolution

44.4 Stereospecificity of the Bimolecular Nucleophilic Substitution

45 Enantiomers without Carbon as Stereogenic Center

45.1 Heteroatoms as Stereogenic Centers

45.2 Axial Chirality

45.3 Planar Chirality and Helicity

46 Diastereomers

46.1 Compounds with Two Different Stereogenic Centers

46.2 Compounds with Two Equally Substituted Stereogenic Centers

47 Aldehydes

47.1 Survey, Nomenclature

47.2 Preparation

47.2.1 Oxidation of Methyl and Hydroxymethyl Groups

47.2.2 Hydrolysis of 1,1-Dihaloalkanes

47.2.3 Reduction of Carboxylic Acid Derivatives

47.2.4 Formylation of Arenes

47.3 Molecular Shape, Resonance Formulas, Reactivity

47.4 Reactions Specific for Aldehydes

47.4.1 Oxidation to Carboxylic Acids, Identification Reactions

47.4.2 CANNIZZARO Disproportionation of Aromatic Aldehydes

47.4.3 Addition of Hydrogensulfite

48 Ketones

48.1 Survey, Nomenclature

48.2 Preparation

48.2.1 Oxidation of Secondary Alcohols

48.2.2 Catalytic Oxidation of Alkenes by Air (WACKER Process)

48.2.3 Oxidation of Activated Methylene Groups (RILEY Oxidation)

48.2.4 Acylation of Arenes to Phenones (FRIEDEL-CRAFTS Acylation)

49 Carbonyl Reactions

49.1 Reactions with Oxygen and Sufur Nucleophiles

49.1.1 Hydration (Water as Nucleophile)

49.1.2 Formation of Acetals and Ketals (Alcohols as Nucleophiles)

49.1.3 Formation of Thioacetals (Mercaptals)

49.2 Reactions with Nitrogen Nucleophiles

49.3 Reactions with Carbon Nucleophiles

49.3.1 Alkynylation

49.3.2 Cyanohydrin and Benzoin Reaction

49.3.3 Addition of GRIGNARD Compounds

49.3.4 WITTIG Alkenylation (Carbonyl Alkenylation)

49.4 Reductions

50 CH Acidity of Carbonyl Compounds

50.1 CH Acidity of Carboxylic Acid Esters

50.1.1 CLAISEN Condensation

50.1.2 DIECKMANN Cyclocondensation

50.2 CH Acidity of Aldehydes and Ketones

50.2.1 Aldol Reaction

50.2.2 CLAISEN Condensation

50.2.3 MANNICH Reaction

51 1,3-Dicarbonyl Compounds

51.1 CH Acidity

51.2 Typical Reactions

51.2.1 Alkylation and Cycloalkylation

51.2.2 Carbonyl Alkenylation (KNOEVENAGEL Alkenylation)

51.2.3 Nucleophilic Addition to CC Double Bonds (MICHAEL Addition)

51.2.4 Oxo-Enol Tautomerism

51.2.5 Cyclizations

52 Phenols

52.1 Nomenclature

52.2 Resonance Formulas, Acidity Relative to Alcohols

52.3 Preparation

52.3.1 HOCK Process (Synthesis of Phenol and Acetone)

52.3.2 Hydrolysis of Substituted Chlorobenzenes

52.3.3 Catalytic Oxidation of Methylarenes

52.3.4 Melting of Arenesulfonates with Alkali Hydroxides

52.3.5 Hydrolysis of Arenediazonium Salts

52.4 Typical Reactions

52.4.1 Conversion into Aryl Ethers (WILLIAMSON Synthesis)

52.4.2 Esterification and FRIES Rearrangement

52.4.3 Electrophilic Substitution

52.4.4 Oxidation

53 Quinones

53.1 Survey and Nomenclature

53.2 Preparation

53.2.1 Oxidation of Phenols and Primary Arenamines

53.2.2 Oxidation of Polycyclic Aromatics

53.2.3 FRIEDEL-CRAFTS Acylation of Arenes with Phthalic Anhydride

53.3 Reactions

53.3.1 Reduction-Oxidation Quinone-Hydroquinone Equilibrium

53.3.2 Autoxidation of Anthrahydroquinone

53.3.3 Additions

53.3.4 Electrophilic Substitutions of Benzenoid Rings

53.3.5 Carbonyl Reactions

54 Organosulfur Compounds

54.1 Sulfur in Organic Compounds

54.2 Organosulfur Compounds with Bivalent Sulfur

54.2.1 Thiols, Thiophenols, Disulfides

54.2.2 Thioethers

54.2.3 Sulfenic Acid Derivatives

54.3 Sulfoxides, Sulfones

54.4 Sulfinic Acids, Sulfonic Acids

54.4.1 Preparation

54.4.2 Sulfonic Acid Derivatives

54.5 Thiocarbonyl Compounds

54.5 1 Thioaldehydes, Thioketones

54.5.2 Thiolic Acids, Thionic Acids, Dithiocarboxylic Acids

55 Carbonic Acid Derivatives

55.1 Survey of Derivatives

55.2 Carbonic Acid Chlorides

55.2.1 Phosgene

55.2.2 Carbonic Acid Ester Chlorides

55.3 Carbonic Acid Esters

55.3.1 Dialkyl Carbonates, Dialkyl Dicarbonates

55.3.2 Carbamic Acid Esters (Urethanes)

55.4 Urea, Thiourea, Guanidine

55.4.1 Urea

55.4.2 Guanidine and Thiourea

55.5 Derivatives of Dithio- and Trithiocarbonic Acid

56 Heterocumulenes

56.1 Analogues of Carbon Dioxide

56.2 Carbon Disulfide

56.3 Isocyanates, Isothiocyanates

56.4 Carbodiimides

57 Rearrangements

57.1 Anionotropic 1,2-Shifts

57.1.1 General Mechanisms (Sextet Rearrangements)

57.1.2 1,2-Shifts from Carbon to Carbon

57.1.3 1,2-Shifts from Carbon to Oxygen

57.1.4 1,2-Shifts from Carbon to Nitrogen

57.2 Cationotropic 1,2-Shifts

57.2.1 FAVORSKII Rearrangement (from Carbon to Carbon)

57.2.2 STEVENS Rearrangement (from Nitrogen to Carbon)

57.2.3 WITTIG Rearrangement (from Oxygen to Carbon)

57.3 Rearrangements at Benzenoid Rings

57.4 Sigmatropic Rearrangements

58 Polymers, Polymerization

58.1 Monomers, Oligomers, Polymers

58.2 Vinyl and Diene Polymers

58.3 Polyethers

58.4 Polyesters

58.5 Polyamides

58.6 Polyurethanes, Polyureas

59 Syntheses with Organosilicon Compounds

59.1 Comparison of Organosilicon and Organic Compounds

59.2 Halosilanes

59.3 Preparative Significance of Trimethylsilyl Compounds

59.3.1 Trimethylsilylation

59.3.2 Syntheses with Silyl Enol Ethers

59.4 Silicones

60 Heteroalicycles

60.1 Nomenclature

60.2 Preparation

60.2.1 Intramolecular Cyclizations

60.2.2 Cycloadditions

60.2.3 Catalytic Hydrogenation of Aromatic Heterocycles

60.3 Reactions

60.3.1 Heteroatom as Nucleophile

60.3.2 Ring Opening

60.3.3 Ring Expansion

61 Five-Membered Aromatic Heterocycles

61.1 Survey and Nomenclature

61.2 π-Excessive Aromatic Heterocycles

61.3 Typical Syntheses

61.3.1 Furan, Pyrrole, Thiophene

61.3.2 Azoles

61.4 Typical Reactions

61.4.1 Basicity and Acidity of Pyrrole

61.4.2 Electrophilic Substitutions

61.4.3 1,3-Diene Reactions

61.4.4 Nucleophilic Substitutions

61.4.5 Ring Opening

62 Six-Membered Aromatic Heterocycles

62.1 Survey and Nomenclature

62.2 π-Deficient Aromatic Heterocycles

62.3 Typical Syntheses

62.3.1 Pyridines

62.3.2 Pyrimidines

62.3.3 Pyrylium Salts

62.4 Typical Reactions

62.4.1 Reactions at the Imino Nitrogen

62.4.2 Nucleophilic Substitutions

62.4.3 Electrophilic Substitutions

62.4.4 CH Acidity of Methyl Groups

63 Benzo-Fused Five-Membered Heteroaromatics

63.1 Survey and Nomenclature

63.2 Typical Syntheses

63.2.1 Benzo[b]furan, Benzo[b]thiophene

63.2.2 Benzo[b]pyrrole (Indole)

63.2.3 Benzo-1,3-azoles

63.2.4 Carbazole

63.3 Typical Reactions

63.3.1 Electrophilic Substitutions

63.3.2 Cycloadditions

63.3.3 Reactions of 2- and 3-Hydroxy Derivatives

64 Benzo-Fused Six-Membered Heteroaromatics

64.1 Survey and Nomenclature

64.2 Typical Syntheses

64.2.1 Quinolines

64.2.2 Isoquinolines

64.2.3 Benzopyrylium Salts

64.3 Typical Reactions

64.3.1 Basicity and Reactions at the Imino Nitrogen

64.3.2 Catalytic Hydrogenation and Oxidative Ring Opening

64.3.3 Nucleophilic Additions

64.3.4 Nucleophilic Substitutions

64.3.5 Electrophilic Substitutions

64.3.6 CH Acidity of Methyl Groups

65 Fused Aromatic Heterocycles

65.1 Heterobicycles with Nitrogen as Bridgehead

65.2 Purines

65.2.1 Survey

65.2.2 Syntheses of Purines

65.2.3 Oxidative Cleavage of Purines (Uric Acid)

65.3 Pteridines

65.3.1 Survey

65.3.2 Syntheses of Pteridines

66 Absorption of Light, Color, Dyes

66.1 Absorption of Light, Color

66.2 Dyes and Pigments

66.3 Basic Types of Dyes

66.3.1 Structural Properties of Dyes: Azo Dyes

66.3.2 Polymethine Dyes

66.3.3 Triarylmethine Dyes

66.3.4 Carbonyl Dyes

67 Porphyrinoids

67.1 Porphyrins and Phthalocyanines as Polyaza[18]annulenes

67.2 Porphyrinoids in Blood and Chloroplasts

67.2.1 Heme

67.2.2 Chlorophyll

68 Amino Acids

68.1 General Survey

68.2 Preparation

68.3 Identification

69 Peptides, Proteins

69.1 Amino Acid Sequence

69.2 Biological Function

69.3 Structure of Proteins

69.4 Peptide Synthesis

69.4.1 Protective Groups

69.4.2 Carboxy Activation

69.4.3 Peptide Coupling

70 Alkaloids

70.1 Origin, Significance, Nomenclature

70.2 Biologically Active Alkaloids

71 Carbohydrates: Aldoses and Ketoses

71.1 Aldoses

71.2 Ketoses

71.3 Cyclohemiacetals, Cyclohemiketals: Pyranoses, Furanoses

71.4 Mutarotation

71.5 Typical Reactions

71.5.1 Glycosides, Glycosidation

71.5.2 O-Alkylation, O-Acylation

71.5.3 Reduction and Oxidation

72 Carbohydrates: Oligo- and Polysaccharides

72.1 Oligosaccharides

72.2 Polysaccharides

73 Nucleic Acids: DNA and RNA

73.1 Nucleotides, Nucleosides, Nucleobases

73.2 Base Pairing and Double Helix of DNA

74 Lipids

74.1 Classification

74.2 Fatty Acids, Fats, Soaps

74.2.1 Saturated and Unsaturated Fatty Acids

74.2.2 Waxes, Soaps, Biofuel

75 Polyketides

75.1 Polyketide Pathway

75.2 Selected Polyketides

76 Terpenes

76.1 Survey, Isoprene Rule

76.2 Occurrence, Significance

76.3 Selected Terpenes (Flavors, Fragrances, Active Substances)

76.3.1 Hemi- and Monoterpenes

76.3.2 Sesquiterpenes

76.3.3 Diterpenes

76.3.4 Triterpenes

76.3.5 Tetraterpenes (Carotenoids)

76.3.6 Polyterpenes

77 Steroids

77.1 Survey, Fusion of the Rings

77.2 Cholesterol

77.3 Bile Acids

77.4 Steroid Hormones

78 Selectivity and Specificity of Organic Reactions

78.1 Chemoselectivity

78.2 Regioselectivity

78.3 Stereoselectivity

78.4 Stereospecificity

79 Planning Organic Syntheses

79.1 Retrosynthetic Disconnections

79.2 Retrons and Synthons

79.3 Designing Selected Syntheses

79.3.1 2-Ethyl-2-hexenal

79.3.2 Ethyl 2,4-Dioxoheptanoate

79.3.3 2-(4-Isobutylphenyl) propanoic Acid

79.3.4 ∆9-Tetrahydrocannabinol

80 Aspects of Molecular Structure

80.1 Molecular Formula and Double Bond Equivalents

80.2 Skeletal Structure: Atom Connectivities

80.3 Conformation

80.4 Relative Configuration

80.5 Absolute Configuration

81 Mass Spectrometry

81.1 Mass Spectrum

81.2 Base Ion, Molecular Ion

81.3 Fragment Ions and Atom Connectivities

82 Infrared Spectroscopy

82.1 IR Spectrum

82.2 Molecular Vibrations

82.3 Identification of Functional Groups and Structural Units

83 Nuclear Magnetic Resonance: Proton NMR

83.1 Nuclear Magnetic Resonance

83.2 Chemical Shift

83.3 NMR Spectrum and Integration

83.4 Signal Multiplets and Coupling Constants

83.4.1 Signal Multiplets

83.4.2 Coupling Constants and Relative Configuration

84 Nuclear Magnetic Resonance: Carbon-13 NMR

84.1 Carbon-13 as NMR Probe

84.2 Carbon-13 Chemical Shifts

84.3 Carbon-Proton Coupling and Detection of CH Multiplets

85 Nuclear Magnetic Resonance: Two-Dimensional NMR

85.1 Homonuclear Shift Correlation

85.1.1 Proton-Proton Shift Correlation (HH COSY)

85.1.2 Carbon-Carbon Shift Correlation

85.2 Heteronuclear Shift Correlation (Carbon-Proton Correlation)

Subject Index

Selected Reference Sources

Preface

Reforms in Europe harmonized the conditions and curricula of the studies of chemistry and other natural sciences, improving the international compatibility of academic degrees (bachelor and master). Therefore, concise, sufficiently detailed, rounded textbooks are increasingly demanded, enabling students to efficiently prepare themselves for written and oral examinations.

This has been the driving force to structure and to draw up this volume which is not intended to be or to replace a comprehensive textbook. Rather, it has been written to facilitate an efficient learning, covering the essentials of organic chemistry in 85 short chapters in a total of about 260 pages in the ePDF format, thus enforcing a very disciplined selection of the material and a succinct style of writing with a minimum of repetition. When adapted to different curricula of universities and individual demands of instructors, studying can be limited to a selection of the chapters presented in this text.

Based on the author's teaching and examination experience of 40 years, this book and its graphics have been developed from scripts of his lectures in organic chemistry held in the USA and in Germany. It comprises the molecular orbital model to explain covalent bonding in organic molecules, the classes of organic compound s including natural products, polymers and biopolymers, basic concepts (orbital hybridization, resonance, aromaticity), types and mechanisms of organic reactions, and essential aspects of molecular structure such as atom connectivities, skeletal isomerism, conformation, configuration, and chirality, including a very brief strategic introduction to structure elucidation by molecular spectroscopy. New chapters deal with selectivity and specificity of organic reactions, planning organic syntheses, two-dimensional and carbon-13 NMR in the second revised edition.

The book is available in the ePDF, eMOBI, and ePUB formats with interactive table of contents, subject index, and cross-references (links). Each chapter is designed as a short learning unit, presented at one glance on one or two pairs of pages in the ePDF format and in the printed version, ending with at least three questions very closely related to the chapter's contents. Thus, when answers cannot be given spontaneously, they are easily found by reading (and understanding) the text once again. These questions offer an option of selfexamination. In very few cases, obvious analogous conclusions or variations of reaction equations are expected as the answers.

Many thanks are due to Dr. Kay Greenfield (Brisbane, Australia) for proofreading. - Any suggestions for corrections or improvement are very welcome for future electronic updating of this text.

Eberhard Breitmaier

Tübingen (Germany), January 2016

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!