108,99 €
The book describes analytical methods (based primarily on classical modal synthesis), the Finite Element Method (FEM), Boundary Element Method (BEM), Statistical Energy Analysis (SEA), Energy Finite Element Analysis (EFEA), Hybrid Methods (FEM-SEA and Transfer Path Analysis), and Wave-Based Methods. The book also includes procedures for designing noise and vibration control treatments, optimizing structures for reduced vibration and noise, and estimating the uncertainties in analysis results. Written by several well-known authors, each chapter includes theoretical formulations, along with practical applications to actual structural-acoustic systems. Readers will learn how to use vibroacoustic analysis methods in product design and development; how to perform transient, frequency (deterministic and random), and statistical vibroacoustic analyses; and how to choose appropriate structural and acoustic computational methods for their applications. The book can be used as a general reference for practicing engineers, or as a text for a technical short course or graduate course.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 919
Veröffentlichungsjahr: 2016
Cover
Title Page
Wiley Series in Acoustics, Noise and Vibration
List of Contributors
1 Overview
1.1 Introduction
1.2 Traditional Vibroacoustic Methods
1.3 New Vibroacoustic Methods
1.4 Choosing Numerical Methods
1.5 Chapter Organization
References
2 Structural Vibrations
2.1 Introduction
2.2 Waves in Structures
2.3 Modes of Vibration
2.4 Mobility and Impedance
2.5 Bending Waves in Infinite Structures
2.6 Coupled Oscillators, Power Flow, and the Basics of Statistical Energy Analysis
2.7 Environmental and Installation Effects
2.8 Summary
References
3 Interior and Exterior Sound
3.1 Introduction
3.2 Interior Sound
3.3 Exterior Sound
3.4 Summary
References
4 Sound-Structure Interaction Fundamentals
4.1 Introduction
4.2 Circular Piston Vibrating against an Acoustic Fluid
4.3 Fluid Loading of Structures
4.4 Structural Waves Vibrating against an Acoustic Fluid
4.5 Complementary Problem: Structural Vibrations Induced by Acoustic Pressure Waves
4.6 Summary
References
5 Structural-Acoustic Modal Analysis and Synthesis
5.1 Introduction
5.2 Coupled Structural-Acoustic System
5.3 Simplified Models
5.4 Component Mode Synthesis
5.5 Summary
References
6 Structural-Acoustic Finite-Element Analysis for Interior Acoustics
6.1 Introduction
6.2 Acoustic Finite-Element Analysis
6.3 Structural-Acoustic Finite-Element Analysis
6.4 Coupled Structural-Acoustic Finite-Element Formulation
6.5 Summary
References
7 Boundary-Element Analysis
7.1 Theory—Assumptions
7.2 Theory—Overview of Theoretical Basis
7.3 Boundary-Element Computations
7.4 The Rayleigh Integral
7.5 The Kirchhoff–Helmholtz Equation
7.6 Nonexistence/Nonuniqueness Difficulties
7.7 Impedance Boundary Conditions
7.8 Interpolation
7.9 Applicability over Frequency and Spatial Resolution
7.10 Implementation – Software Required
7.11 Computer Resources Required
7.12 Inputs and How to Determine them
7.13 Outputs
7.14 Applications
7.15 Verification and Validation
7.16 Error Analysis
7.17 Summary
References
8 Structural and Acoustic Noise Control Material Modeling
8.1 Introduction
8.2 Damping Materials
8.3 Modeling Multilayer Noise Control Materials
8.4 Conclusion
References
9 Structural–Acoustic Optimization
9.1 Introduction
9.2 Brief Survey of Structural–Acoustic Optimization
9.3 Structural–Acoustic Optimization Procedures and Literature
9.4 Process of Structural–Acoustic Optimization
9.5 Minimization of Radiated Sound Power from a Finite Beam
9.6 Conclusions
References
Chapter 10: Random and Stochastic Structural–Acoustic Analysis
10.1 Introduction
10.2 Uncertainty Quantification in Vibroacoustic Problems
10.3 Random Variables and Random Fields
10.4 Discretization of Random Quantities
10.5 Stochastic FEM Formulation of Structural Vibrations
10.6 Numerical Simulation Procedures
10.7 Numerical Examples
10.8 Summary and Concluding Remarks
References
11 Statistical Energy Analysis
11.1 Introduction
11.2 SEA Background
11.3 General Wave-Based SEA Formulation
11.4 Energy Storage
11.5 Energy Transmission
11.6 Power Input and Dissipation
11.7 Example Applications
11.8 Summary
References
12 Hybrid FE-SEA
12.1 Introduction
12.2 Overview
12.3 The Hybrid FE-SEA Method
12.4 Example
12.5 Implementation and Algorithms
12.6 Application Examples
12.7 Summary
References
13 Hybrid Transfer Path Analysis
13.1 Introduction
13.2 Transfer Path Analysis
13.3 Hybrid Transfer Path Analysis
13.4 Vibro-Acoustic Transfer Function
13.5 Operating Powertrain Loads
13.6 HTPA Applications
13.7 Vibrational Power Flow
13.8 Summary
References
14 Energy Finite Element Analysis
14.1 Overview of Energy Finite Element Analysis
14.2 Developing the Governing Differential Equations in EFEA
14.3 Power Transfer Coefficients
14.4 Formulation of Energy Finite Element System of Equations
14.5 Applications
References
15 Wave-based Structural Modeling
15.1 General Approach
15.2 Theoretical Formulation
15.3 Wave-based Spectral Finite Element Formulation
15.4 Applications
15.5 Conclusion/Summary
References
Index
End User License Agreement
Chapter 01
Table 1.1 Approximate frequency range, computational requirements, and model and response resolution of vibroacoustic analysis methods
Chapter 02
Table 2.1
σ
m
values for free, clamped, and cantilevered beam modes
Chapter 03
Table 3.1 Acoustic boundary conditions
Table 3.2 Acoustic modes and natural frequencies [2, 3]
Table 3.2a
Table 3.2b
Table 3.3 Sound radiation from basic source and radiator cases [1, 2]
Chapter 04
Table 4.1 List of sound power radiation quantities and their interrelationships
Chapter 06
Table 6.1 Acoustic element types
Table 6.2 Plate element types
Table 6.3 Elastic boundary effects on cavity frequencies of station wagon
Chapter 07
Table 7.1 The number of interpolation frequencies required to reduce the error below 0.01 as a function of the number of active interpolation points
Table 7.2 Computation time as a function of number of processors
Table 7.3 Resonance frequencies and mode shapes for the cylinder (excluding modes with a nodal line at the cylinder’s center along its length)
Chapter 08
Table 8.1 Notional VEM material properties over frequency bands
Table 8.2 Notional complex resonance frequencies and loss factors
Table 8.3 The physical properties of the FG and Foam used in the double wall transmission loss studies of Figures 8.20 and 8.21
Chapter 09
Table 9.1 Optimization results and statistics
Table 9.2 Gain of objective function in (dB) for different optimal configurations
Chapter 10
Table 10.1 The gPC coefficients of the uncertain parameters
K
1
,
K
2
and
K
3
in Figure 10.5
Table 10.2 Sample dimensions;
a
: length,
b
: width and
h
: thickness; and material properties of the investigated orthotropic plates
Table 10.3 The identified gPC coefficients of the uncertain elastic parameters
Table 10.4 The coefficients of gPC of the first four eigenfrequencies for the orthotropic plate
Table 10.5 The nominal values of the first four eigenfrequencies,
, the probability with which these values occur, and corresponding standard deviations
Chapter 11
Table 11.1 Summary of modal density formulas
Chapter 13
Table 13.1 Predicted and measured powertrain mode frequencies and mode shapes [8]
Chapter 14
Table 14.1 Summary of differences between EFEA and flight test data for interior SPL
Table 14.2 Differences between the experimentally computed changes in the SPL due to treatment and the ones determined through the EFEA simulations
Chapter 01
Figure 1.1 Low-frequency (LF), mid-frequency (MF), and high-frequency (HF) approximate ranges in sound-pressure-level response in an automotive vehicle passenger compartment
Figure 1.2 Road noise sources in vehicle traveling at speed
V
: (a) Structure-borne noise in vehicle traveling on coarse road and (b) airborne noise in vehicle travelling on smooth road
Chapter 02
Figure 2.1 A longitudinal wave passing through a plate or beam (amplitudes highly exaggerated). As the material expands or contracts along the axis of the plate or beam, the Poisson effect contracts and expands the material in the transverse directions
Figure 2.2 A shear wave propagating through a plate or beam (amplitudes highly exaggerated). The wave propagates along the plate or beam axis, while deforming the structure transversely
Figure 2.3 A flexural, or bending wave propagating through a plate or beam (amplitudes highly exaggerated). As with pure shear, the wave propagates along the plate or beam axis, while deforming the structure transversely. Unlike pure shear, however, a bending wave causes the plate or beam cross sections to rotate about the neutral axis
Figure 2.4 Various wave speeds in a 10-cm-thick steel plate. The longitudinal and shear waves are nondispersive, and the bending waves are dispersive (vary with frequency). The thin plate wave speed becomes invalid at high frequencies where rotary inertia and shear resistance become important
Figure 2.5 Composite laminate stacks: left—uniaxial, right—quasi-isotropic
Figure 2.6 A typical sandwich panel cross section
Figure 2.7 Honeycomb core
Figure 2.8 Typical sandwich panel wave speeds
Figure 2.9 A stiffened aircraft fuselage
Figure 2.10 First four mode shapes of a simply supported beam. The dashed lines indicate the vibration antinodes, or locations of maximum deformation
Figure 2.11 First four mode shapes of a free beam. The dashed lines indicate the vibration nodes, or locations of zero deformation
Figure 2.12 Simply supported (left) and free (right) beam mode shapes at high mode order
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
