144,99 €
This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1355
Veröffentlichungsjahr: 2016
Cover
Title Page
Copyright
Preface
List of Contributors
Section I: Fluid Flows
Chapter 1: Drop Generation in Controlled Fluid Flows
1.1 Introduction
1.2 Coflow
1.3 Flow Focusing
1.4 Summary and Outlook
References
Chapter 2: Electric Field Effects
2.1 Introduction
2.2 Mathematical Formulation and Estimates
2.3 Applications and Extensions
2.4 Conclusions
References
Chapter 3: Fluid Flows for Engineering Complex Materials
3.1 Introduction
3.2 Single Fluid Micro- or Nanoparticles
3.3 Steady-state Complex Capillary Flows for Particles with Complex Structure
3.4 Summary
Acknowledgments
References
Section II: Colloids in External Fields
Chapter 4: Fluctuations in Particle Sedimentation
4.1 Introduction
4.2 Mean Sedimentation Rate
4.3 Velocity Fluctuations
4.4 Summary
References
Chapter 5: Particles in Electric Fields
5.1 Electrostatics in Electrolytes
5.2 The Poisson–Nernst–Planck–Stokes Equations
5.3 Electro-Osmotic Flows
5.4 Electrophoresis
5.5 Nonlinear Electrokinetic Effects
5.6 Conclusions
References
Chapter 6: Colloidal Dispersions in Shear Flow
6.1 Introduction
6.2 Basic Concepts of Rheology
6.3 Effect of Shear Flow on Crystallization of Colloidal Spheres
6.4 Effect of Shear Flow on Gas–Liquid Phase Separating Colloidal Spheres
6.5 Effect of Shear Flow on the Isotropic–Nematic Phase Transition of Colloidal Rods
6.6 Concluding Remarks
References
Chapter 7: Colloidal Interactions with Optical Fields: Optical Tweezers
7.1 Introduction
7.2 Theory
7.3 Experimental Systems
7.4 Applications
7.5 Conclusions
References
Section III: Experimental Techniques
Chapter 8: Scattering Techniques
8.1 Introduction
8.2 Light and Other Scattering Techniques
8.3 Static Light Scattering
8.4 Dynamic Light Scattering
8.5 Imaging and Scattering
References
Chapter 9: Rheology of Soft Materials
9.1 Introduction
9.2 Deformation and Flow: Basic Concepts
9.3 Stress Relaxation Test: Time-Dependent Response
9.4 Oscillatory Rheology: Frequency-Dependent Response
9.5 Steady Shear Rheology
9.6 Nonlinear Rheology
9.7 Examples of Typical Rheological Behavior for Different Soft Materials
9.8 Rheometers
9.9 Conclusions
References
Chapter 10: Optical Microscopy of Soft Matter Systems
10.1 Introduction
10.2 Basics of Optical Microscopy
10.3 Bright Field and Dark Field Microscopy
10.4 Polarizing Microscopy
10.5 Differential Interference Contrast and Phase Contrast Microscopies
10.6 Fluorescence Microscopy
10.7 Fluorescence Confocal Microscopy
10.8 Fluorescence Confocal Polarizing Microscopy
10.9 Nonlinear Optical Microscopy
10.10 Three-Dimensional Localization Using Engineered Point Spread Functions
10.11 Integrating Three-Dimensional Imaging Systems with Optical Tweezers
10.12 Outlook and Perspectives
References
Section IV: Colloidal Phases
Chapter 11: Colloidal Fluids
11.1 Introduction
11.2 Quasi-Two-Dimensional Colloidal Fluids
11.3 Static Structure
11.4 Model Pair Potential
11.5 The Ornstein–Zernike Equation
11.6 Static Structure Factor
11.7 Self-Diffusion
11.8 Dynamic Structure
11.9 Conclusions
Acknowledgments
References
Chapter 12: Colloidal Crystallization
12.1 Crystallization and Close Packing
12.2 Crystallization of Hard Spheres
12.3 Crystallization of Charged Spheres
12.4 Crystallization of Microgel Particles
12.5 Conclusions and New Directions
Acknowledgments
References
Chapter 13: The Glass Transition
13.1 Introduction
13.2 Basics of Glass Formation
13.3 Structure of Molecular or Colloidal Glass-Forming Systems
13.4 Dynamics of Glass-Forming Molecular Systems
13.5 Dynamics of Glass-Forming Colloidal Systems
13.6 Further Comparisons Between Molecular and Colloidal Glass Formation
13.7 Theoretical Approaches to Understand Glass Formation
13.8 Conclusions
References
Chapter 14: Colloidal Gelation
14.1 Introduction: What Is a Gel?
14.2 Colloid Interactions: Two Important Cases
14.3 Routes to Gelation
14.4 Elasticity of Colloidal Gels
14.5 Conclusions
References
Section V: Other Soft Materials
Chapter 15: Emulsions
15.1 Introduction
15.2 Processing and Purification
15.3 Emulsion Science
15.4 Conclusions
References
Chapter 16: An Introduction to the Physics of Liquid Crystals
16.1 Overview of This Chapter
16.2 Liquid Crystal Classes and Phases
16.3 The Anisotropic Physical Properties of Liquid Crystals
16.4 Deformations and Singularities in The Director Field
16.5 The Special Physical Properties of Chiral Liquid Crystals
16.6 Some Examples From Present-Day Liquid Crystal Research
References
Chapter 17: Entangled Granular Media
17.1 Granular Materials
17.2 Experiment
17.3 Simulation
17.4 Conclusions
Acknowledgments
References
Chapter 18: Foams
18.1 Introduction
18.2 Equilibrium Structures
18.3 Aging
18.4 Rheology
References
Section VI: Ordered Materials in Curved Spaces
Chapter 19: Crystals and Liquid Crystals Confined to Curved Geometries
19.1 Introduction
19.2 Crystalline Solids and Liquid Crystals
19.3 Differential Geometry of Surfaces
19.4 Elasticity on Curved Surfaces and in Confined Geometries
19.5 Topological Defects
19.6 Interaction Between Curvature and Defects
19.7 Nematics in Spherical Geometries
19.8 Toroidal Nematics
19.9 Concluding Remarks
References
Chapter 20: Nematics On Curved Surfaces – Computer Simulations of Nematic Shells
20.1 Introduction
20.2 Theory
20.3 Experiments on Spherical Shells
20.4 Computer Simulations – Practicalities
20.5 Computer Simulations of Nematic Shells
20.6 Conclusions
References
Index
End User License Agreement
xv
xvi
xvii
xviii
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
187
189
190
191
192
193
194
195
196
197
198
199
200
201
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
293
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
369
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
403
404
405
406
407
408
Cover
Table of Contents
Preface
Begin Reading
Preface
Figure 1 Soft matter examples: (a) nematic liquid crystal droplet seen under crossed polarizers and (b) simulation snapshot of a colloidal gel.
Chapter 1: Drop Generation in Controlled Fluid Flows
Figure 1.1 (a) Schematic of the coflowing configuration. Source: Reprinted Figure 2a with permission from Ref. [20]. (b) Schematic of the axisymmetric flow focusing configuration. Source: Reprinted Figure 1 from Ref. [52].
Figure 1.2 (a) Schematic illustration of the microfluidic T-junction composed of rectangular channels. (b) Top view of the same schematic in a two-dimensional representation. Source: Reprinted Figure 1 from Ref. [17].
Figure 1.3 Images in the (a) dripping, (b) narrowing jet, and (c) widening jet regimes. Source: Reprinted Figure 1 from Ref. [23]. Copyright 2007 by the American Physical Society.
Figure 1.4 State diagram of the dripping-to-jetting transition for coflowing streams as a function of and . Filled symbols represent dripping while open symbols represent jetting. Each shape is a different viscosity ratio, surface tension, or geometry. Surface tension is mN/m unless otherwise stated. Square: . Diamond: , with the extra capillary tube to increase . Hexagon: . Circle: . Pentagon: . Triangle: . Star: and mN/m. Source: Reprinted Figure 4 from Ref. [23]. Copyright 2007 by the American Physical Society.
Figure 1.5 Experimentally measured jet diameter (triangles) and droplet diameter (circles) scaled by as a function of the inner to outer flow rate ratio for a viscosity ratio (). The solid line is the prediction from the model for with no fitting parameters. The dashed line is the predicted result assuming from the Rayleigh–Plateau instability. Source: Reprinted Figure 2 from Ref. [23]. Copyright 2007 by the American Physical Society.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
