Fluids, Colloids and Soft Materials -  - E-Book

Fluids, Colloids and Soft Materials E-Book

0,0
144,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1355

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Preface

List of Contributors

Section I: Fluid Flows

Chapter 1: Drop Generation in Controlled Fluid Flows

1.1 Introduction

1.2 Coflow

1.3 Flow Focusing

1.4 Summary and Outlook

References

Chapter 2: Electric Field Effects

2.1 Introduction

2.2 Mathematical Formulation and Estimates

2.3 Applications and Extensions

2.4 Conclusions

References

Chapter 3: Fluid Flows for Engineering Complex Materials

3.1 Introduction

3.2 Single Fluid Micro- or Nanoparticles

3.3 Steady-state Complex Capillary Flows for Particles with Complex Structure

3.4 Summary

Acknowledgments

References

Section II: Colloids in External Fields

Chapter 4: Fluctuations in Particle Sedimentation

4.1 Introduction

4.2 Mean Sedimentation Rate

4.3 Velocity Fluctuations

4.4 Summary

References

Chapter 5: Particles in Electric Fields

5.1 Electrostatics in Electrolytes

5.2 The Poisson–Nernst–Planck–Stokes Equations

5.3 Electro-Osmotic Flows

5.4 Electrophoresis

5.5 Nonlinear Electrokinetic Effects

5.6 Conclusions

References

Chapter 6: Colloidal Dispersions in Shear Flow

6.1 Introduction

6.2 Basic Concepts of Rheology

6.3 Effect of Shear Flow on Crystallization of Colloidal Spheres

6.4 Effect of Shear Flow on Gas–Liquid Phase Separating Colloidal Spheres

6.5 Effect of Shear Flow on the Isotropic–Nematic Phase Transition of Colloidal Rods

6.6 Concluding Remarks

References

Chapter 7: Colloidal Interactions with Optical Fields: Optical Tweezers

7.1 Introduction

7.2 Theory

7.3 Experimental Systems

7.4 Applications

7.5 Conclusions

References

Section III: Experimental Techniques

Chapter 8: Scattering Techniques

8.1 Introduction

8.2 Light and Other Scattering Techniques

8.3 Static Light Scattering

8.4 Dynamic Light Scattering

8.5 Imaging and Scattering

References

Chapter 9: Rheology of Soft Materials

9.1 Introduction

9.2 Deformation and Flow: Basic Concepts

9.3 Stress Relaxation Test: Time-Dependent Response

9.4 Oscillatory Rheology: Frequency-Dependent Response

9.5 Steady Shear Rheology

9.6 Nonlinear Rheology

9.7 Examples of Typical Rheological Behavior for Different Soft Materials

9.8 Rheometers

9.9 Conclusions

References

Chapter 10: Optical Microscopy of Soft Matter Systems

10.1 Introduction

10.2 Basics of Optical Microscopy

10.3 Bright Field and Dark Field Microscopy

10.4 Polarizing Microscopy

10.5 Differential Interference Contrast and Phase Contrast Microscopies

10.6 Fluorescence Microscopy

10.7 Fluorescence Confocal Microscopy

10.8 Fluorescence Confocal Polarizing Microscopy

10.9 Nonlinear Optical Microscopy

10.10 Three-Dimensional Localization Using Engineered Point Spread Functions

10.11 Integrating Three-Dimensional Imaging Systems with Optical Tweezers

10.12 Outlook and Perspectives

References

Section IV: Colloidal Phases

Chapter 11: Colloidal Fluids

11.1 Introduction

11.2 Quasi-Two-Dimensional Colloidal Fluids

11.3 Static Structure

11.4 Model Pair Potential

11.5 The Ornstein–Zernike Equation

11.6 Static Structure Factor

11.7 Self-Diffusion

11.8 Dynamic Structure

11.9 Conclusions

Acknowledgments

References

Chapter 12: Colloidal Crystallization

12.1 Crystallization and Close Packing

12.2 Crystallization of Hard Spheres

12.3 Crystallization of Charged Spheres

12.4 Crystallization of Microgel Particles

12.5 Conclusions and New Directions

Acknowledgments

References

Chapter 13: The Glass Transition

13.1 Introduction

13.2 Basics of Glass Formation

13.3 Structure of Molecular or Colloidal Glass-Forming Systems

13.4 Dynamics of Glass-Forming Molecular Systems

13.5 Dynamics of Glass-Forming Colloidal Systems

13.6 Further Comparisons Between Molecular and Colloidal Glass Formation

13.7 Theoretical Approaches to Understand Glass Formation

13.8 Conclusions

References

Chapter 14: Colloidal Gelation

14.1 Introduction: What Is a Gel?

14.2 Colloid Interactions: Two Important Cases

14.3 Routes to Gelation

14.4 Elasticity of Colloidal Gels

14.5 Conclusions

References

Section V: Other Soft Materials

Chapter 15: Emulsions

15.1 Introduction

15.2 Processing and Purification

15.3 Emulsion Science

15.4 Conclusions

References

Chapter 16: An Introduction to the Physics of Liquid Crystals

16.1 Overview of This Chapter

16.2 Liquid Crystal Classes and Phases

16.3 The Anisotropic Physical Properties of Liquid Crystals

16.4 Deformations and Singularities in The Director Field

16.5 The Special Physical Properties of Chiral Liquid Crystals

16.6 Some Examples From Present-Day Liquid Crystal Research

References

Chapter 17: Entangled Granular Media

17.1 Granular Materials

17.2 Experiment

17.3 Simulation

17.4 Conclusions

Acknowledgments

References

Chapter 18: Foams

18.1 Introduction

18.2 Equilibrium Structures

18.3 Aging

18.4 Rheology

References

Section VI: Ordered Materials in Curved Spaces

Chapter 19: Crystals and Liquid Crystals Confined to Curved Geometries

19.1 Introduction

19.2 Crystalline Solids and Liquid Crystals

19.3 Differential Geometry of Surfaces

19.4 Elasticity on Curved Surfaces and in Confined Geometries

19.5 Topological Defects

19.6 Interaction Between Curvature and Defects

19.7 Nematics in Spherical Geometries

19.8 Toroidal Nematics

19.9 Concluding Remarks

References

Chapter 20: Nematics On Curved Surfaces – Computer Simulations of Nematic Shells

20.1 Introduction

20.2 Theory

20.3 Experiments on Spherical Shells

20.4 Computer Simulations – Practicalities

20.5 Computer Simulations of Nematic Shells

20.6 Conclusions

References

Index

End User License Agreement

Pages

xv

xvi

xvii

xviii

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

189

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

293

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

369

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

403

404

405

406

407

408

Guide

Cover

Table of Contents

Preface

Begin Reading

List of Illustrations

Preface

Figure 1 Soft matter examples: (a) nematic liquid crystal droplet seen under crossed polarizers and (b) simulation snapshot of a colloidal gel.

Chapter 1: Drop Generation in Controlled Fluid Flows

Figure 1.1 (a) Schematic of the coflowing configuration. Source: Reprinted Figure 2a with permission from Ref. [20]. (b) Schematic of the axisymmetric flow focusing configuration. Source: Reprinted Figure 1 from Ref. [52].

Figure 1.2 (a) Schematic illustration of the microfluidic T-junction composed of rectangular channels. (b) Top view of the same schematic in a two-dimensional representation. Source: Reprinted Figure 1 from Ref. [17].

Figure 1.3 Images in the (a) dripping, (b) narrowing jet, and (c) widening jet regimes. Source: Reprinted Figure 1 from Ref. [23]. Copyright 2007 by the American Physical Society.

Figure 1.4 State diagram of the dripping-to-jetting transition for coflowing streams as a function of and . Filled symbols represent dripping while open symbols represent jetting. Each shape is a different viscosity ratio, surface tension, or geometry. Surface tension is mN/m unless otherwise stated. Square: . Diamond: , with the extra capillary tube to increase . Hexagon: . Circle: . Pentagon: . Triangle: . Star: and mN/m. Source: Reprinted Figure 4 from Ref. [23]. Copyright 2007 by the American Physical Society.

Figure 1.5 Experimentally measured jet diameter (triangles) and droplet diameter (circles) scaled by as a function of the inner to outer flow rate ratio for a viscosity ratio (). The solid line is the prediction from the model for with no fitting parameters. The dashed line is the predicted result assuming from the Rayleigh–Plateau instability. Source: Reprinted Figure 2 from Ref. [23]. Copyright 2007 by the American Physical Society.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!