125,99 €
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors—ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1184
Veröffentlichungsjahr: 2014
ERIC W. HANSEN
Thayer School of Engineering, Dartmouth College
Cover Image: ©iStockphoto/olgaaltunina
Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.
Library of Congress Cataloging-in-Publication Data is available.
ISBN: 978-1-118-47914-8
To my family
Preface
Philosophy and Distinctives
Flow of the Book
Suggested Use
Acknowledgments
Chapter 1: Review of Prerequisite Mathematics
1.1 Common Notation
1.2 Vectors in Space
1.3 Complex Numbers
1.4 Matrix Algebra
1.5 Mappings and Functions
1.6 Sinusoidal Functions
1.7 Complex Exponentials
1.8 Geometric Series
1.9 Results from Calculus
1.10 Top 10 Ways to Avoid Errors in Calculations
Problems
Notes
Chapter 2: Vector Spaces
2.1 Signals and Vector Spaces
2.2 Finite-Dimensional Vector Spaces
2.3 Infinite-Dimensional Vector Spaces
2.4 ∗ Operators
2.5 ∗ Creating Orthonormal Bases—the Gram–Schmidt Process
2.6 Summary
Problems
Notes
Chapter 3: The Discrete Fourier Transform
3.1 Sinusoidal Sequences
3.2 The Discrete Fourier Transform
3.3 Interpreting the DFT
3.4 DFT Properties and Theorems
3.5 Fast Fourier Transform
3.6 ∗ Discrete Cosine Transform
3.7 Summary
Problems
Notes
Chapter 4: The Fourier Series
4.1 Sinusoids and Physical Systems
4.2 Definitions and Interpretation
4.3 Convergence of the Fourier Series
4.4 Fourier Series Properties and Theorems
4.5 The Heat Equation
4.6 The Vibrating String
4.7 Antenna Arrays
4.8 Computing the Fourier Series
4.9 Discrete Time Fourier Transform
4.10 Summary
Problems
Notes
Chapter 5: The Fourier Transform
5.1 From Fourier Series to Fourier Transform
5.2 Basic Properties and Some Examples
5.3 Fourier Transform Theorems
5.4 Interpreting the Fourier Transform
5.5 Convolution
5.6 More About the Fourier Transform
5.7 Time–Bandwidth Relationships
5.8 Computing the Fourier Transform
5.9 ∗ Time–Frequency Transforms
5.10 Summary
Problems
Notes
Chapter 6: Generalized Functions
6.1 Impulsive Signals and Spectra
6.2 The Delta Function in a Nutshell
6.3 Generalized Functions
6.4 Generalized Fourier Transform
6.5 Sampling Theory and Fourier Series
6.6 Unifying the Fourier Family
6.7 Summary
Problems
Notes
Chapter 7: Complex Function Theory
7.1 Complex Functions and Their Visualization
7.2 Differentiation
7.3 Analytic Functions
7.4 exp
z
and Functions Derived From It
7.5 Log
z
and Functions Derived from It
7.6 Summary
Problems
Notes
Chapter 8: Complex Integration
8.1 Line Integrals in the Plane
8.2 The Basic Complex Integral:
8.3 Cauchy's Integral Theorem
8.4 Cauchy's Integral Formula
8.5 Laurent Series and Residues
8.6 Using Contour Integration to Calculate Integrals of Real Functions
8.7 Complex Integration and the Fourier Transform
8.8 Summary
Problems
Notes
Chapter 9: Laplace, Z, and Hilbert Transforms
9.1 The Laplace Transform
9.2 The Z Transform
9.3 The Hilbert Transform
9.4 Summary
Problems
Notes
Chapter 10: Fourier Transforms in Two and Three Dimensions
10.1 Two-Dimensional Fourier Transform
10.2 Fourier Transforms in Polar Coordinates
10.3 Wave Propagation
10.4 Image Formation and Processing
10.5 Fourier Transform of a Lattice
10.6 Discrete Multidimensional Fourier Transforms
10.7 Summary
Problems
Notes
Bibliography
Index
End User License Agreement
Chapter 4
Table 4.1
Table 4.2
Table 4.3
Chapter 5
Table 5.1
Chapter 6
Table 6.1
Table 6.2
Table 6.3
Chapter 9
Table 9.1
Table 9.2
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
