Graph Spectral Image Processing - Gene Cheung - E-Book

Graph Spectral Image Processing E-Book

Gene Cheung

0,0
139,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing - extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels - provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements. The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 537

Veröffentlichungsjahr: 2021

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Introduction to Graph Spectral Image Processing

I.1. Introduction

I.2. Graph definition

I.3. Graph spectrum

I.4. Graph variation operators

I.5. Graph signal smoothness priors

I.6. References

PART 1 Fundamentals of Graph Signal Processing

1 Graph Spectral Filtering

1.1. Introduction

1.2. Review: filtering of time-domain signals

1.3. Filtering of graph signals

1.4. Edge-preserving smoothing of images as graph spectral filters

1.5. Multiple graph filters: graph filter banks

1.6. Fast computation

1.7. Conclusion

1.8. References

2 Graph Learning

2.1. Introduction

2.2. Literature review

2.3. Graph learning: a signal representation perspective

2.4. Applications of graph learning in image processing

2.5. Concluding remarks and future directions

2.6. References

3 Graph Neural Networks

3.1. Introduction

3.2. Spectral graph-convolutional layers

3.3. Spatial graph-convolutional layers

3.4. Concluding remarks

3.5. References

PART 2 Imaging Applications of Graph Signal Processing

4 Graph Spectral Image and Video Compression

4.1. Introduction

4.2. Graph-based models for image and video signals

4.3. Graph spectral methods for compression

4.4. Conclusion and potential future work

4.5. References

5 Graph Spectral 3D Image Compression

5.1. Introduction to 3D images

5.2. Graph-based 3D image coding: overview

5.3. Graph construction

5.4. Concluding remarks

5.5. References

6 Graph Spectral Image Restoration

6.1. Introduction

6.2. Discrete-domain methods

6.3. Continuous-domain methods

6.4. Learning-based methods

6.5. Concluding remarks

6.6. References

7 Graph Spectral Point Cloud Processing

7.1. Introduction

7.2. Graph and graph-signals in point cloud processing

7.3. Graph spectral methodologies for point cloud processing

7.4. Low-level point cloud processing

7.5. High-level point cloud understanding

7.6. Summary and further reading

7.7. References

8 Graph Spectral Image Segmentation

8.1. Introduction

8.2. Pixel membership functions

8.3. Matrix properties

8.4. Graph cuts

8.5. Summary

8.6. References

9 Graph Spectral Image Classification

9.1. Formulation of graph-based classification problems

9.2. Toward practical graph classifier implementation

9.3. Feature learning via deep neural network

9.4. Conclusion

9.5. References

10 Graph Neural Networks for Image Processing

10.1. Introduction

10.2. Supervised learning problems

10.3. Generative models for point clouds

10.4. Concluding remarks

10.5. References

List of Authors

Index

End User License Agreement

Guide

Cover

Table of Contents

Title Page

Copyright

Introduction to Graph Spectral Image Processing

Begin Reading

List of Authors

Index

End User License Agreement

Pages

v

iii

iv

xi

xii

xiii

xiv

xv

xvi

xvii

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

65

66

67

68

69

70

71

72

73

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

299

300

301

302

303

SCIENCES

Image, Field Director – Laure Blanc-Feraud

Compression, Coding and Protection of Images and Videos, Subject Head – Christine Guillemot

Graph Spectral Image Processing

Coordinated by

Gene Cheung

Enrico Magli

First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.com

© ISTE Ltd 2021

The rights of Gene Cheung and Enrico Magli to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2021932054

British Library Cataloguing-in-Publication DataA CIP record for this book is available from the British LibraryISBN 978-1-78945-028-6

ERC code:

PE7 Systems and Communication Engineering PE7_7 Signal processing

PART 1Fundamentals of Graph Signal Processing