Hydroformylation - Armin Börner - E-Book

Hydroformylation E-Book

Armin Börner

0,0
297,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Filling a gap in the market for an up-to-date work on the topic, this unique and timely book in 2 volumes is comprehensive in covering the entire range of fundamental and applied aspects of hydroformylation reactions. The two authors are at the forefront of catalysis research, and unite here their expertise in synthetic and applied catalysis, as well as theoretical and analytical chemistry. They provide a detailed account of the catalytic systems employed, catalyst stability and recovery, mechanistic investigations, substrate scope, and technical implementation. Chapters on multiphase hydroformylation procedures, tandem hydroformylations and other industrially applied reactions using syngas and carbon monoxide are also included. The result is a must-have reference not only for synthetic chemists working in both academic and industrial research, but also for theoreticians and analytical chemists.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1067

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Dedication

Foreword

Volume 1

Introduction

References

Chapter 1: Metals in Hydroformylation

1.1 The Pivotal Role of Hydrido Complexes

References

1.2 Bimetallic Catalysts

References

1.3 Effect of Organic Ligands

References

1.4 Cobalt-Catalyzed Hydroformylation

References

1.5 Rhodium-Catalyzed Hydroformylation

References

1.6 Ruthenium-Catalyzed Hydroformylation

References

1.7 Palladium-Catalyzed Hydroformylation

References

1.8 Platinum-Catalyzed Hydroformylation

References

1.9 Iridium-Catalyzed Hydroformylation

References

1.10 Iron-Catalyzed Hydroformylation

References

Chapter 2: Organic Ligands

References

2.1 Phosphines – Typical Structures and Individuals, Syntheses, and Selected Properties

References

2.2 Phosphites – Synthesis, Typical Examples, and Degradation

References

2.3 Phosphoramidites – Syntheses, Selected Structures, and Degradation

References

2.4 Chiral Phosphorus Ligands for Stereoselective Hydroformylation

References

2.5

N

-Heterocyclic Carbenes (NHCs) as Ligands in Transition-Metal-Catalyzed Hydroformylation

References

Chapter 3: Syngas and Alternative Syngas Sources

3.1 General Remarks

3.2 Generation of Syngas from Formaldehyde or Paraformaldehyde

3.3 Syngas Generation from CO

2

3.4 Syngas Generation from Methanol

3.5 Formic Acid or Methyl Formate as Source for Hydrogen

3.6 Alcohols from Biomass as Source of Syngas

3.7 Conclusions

References

Volume 2

Chapter 4: Hydroformylation Reactions

4.1 Hydroformylation of Unfunctionalized Monoolefins, Polyolefins, and Alkynes

References

4.2 Hydroformylation of Functionalized Olefins

References

4.3 Stereoselective Hydroformylation

References

4.4 Scaffold-Directed Hydroformylation

References

Chapter 5: Tandem and Other Sequential Reactions Using a Hydroformylation Step

References

5.1 Tandem Isomerization–Hydroformylation Reactions

References

5.2 Sequential Hydroformylation–Hydrogenation Reactions

References

5.3 Hydroformylation–Acetalization Tandem Reactions

References

5.4 Hydroaminomethylation

References

5.5 Hydroformylation Followed by Another C−C-Bond Formation Step

References

Chapter 6: Synthesis of Special Products via Hydroformylation

6.1 Production of Aroma Compounds and Fragrances via Hydroformylation

References

6.2 Hydroformylation of Lipids

References

6.3 Hydroformylation of Epoxides

References

6.4 Syngas-Based Routes to Glycol Aldehyde and Ethylene Glycol

References

Chapter 7: Hydroformylation in Nonconventional Reaction Media

7.1 General Remarks

7.2 Methodologies

7.3 Comparison of Some Methods

References

Chapter 8: Decarbonylation and Dehydrocarbonylation of Aldehydes

8.1 General Remarks

8.2 Dehydrocarbonylation

8.3 Conclusions

References

Chapter 9: Selected Aspects of Production Processes

9.1 General Remarks

9.2 The Johnson Matthey Oxo Alcohols Process

TM

9.3 ExxonMobil Process for the Production of Highly Branched, Long-Chain Alcohols

9.4 Process Design for Hydroformylating Octenes at the University of Kansas

9.5 Comments on Heterogenization of Hydroformylation

9.6 Outlook

References

Index

End User License Agreement

Pages

xi

xii

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

Guide

Cover

Table of Contents

Foreword

Begin Reading

List of Illustrations

Chapter 1: Metals in Hydroformylation

Scheme 1.1 Simplified catalytic cycle for hydroformylation.

Scheme 1.3 Equilibrium of catalytically active hydrido carbonyl complexes.

Scheme 1.2 Competition between isomerization and hydroformylation in relation to CO pressure.

Chapter 2: Organic Ligands

Figure 2.1 Historical development of organic ligands for homogeneously catalyzed hydroformylation.

Figure 2.2 Classification of trivalent P-ligands based on the nature of the α-atom next to the phosphorus.

Figure 2.3 (a, b) Commonly used models for the steric characterization of phosphorus ligands.

Chapter 3: Syngas and Alternative Syngas Sources

Figure 3.1 Sources for syngas used in hydroformylation.

Scheme 3.1 Syngas-free hydroformylation of olefins by a one-pot hydroboration–homologation and final oxidation.

Scheme 3.2 Two competing mechanisms in the hydroformylation with formaldehyde.

Scheme 3.3 Hydroformylation of olefins with paraformaldehyde.

Scheme 3.4 Hydroformylation of allyl alcohol with paraformaldehyde.

Scheme 3.5 Hydroformylation of 1-decene with formalin or paraformaldehyde.

Scheme 3.6 Asymmetric hydroformylation of vinylarenes with formaldehyde (37 wt% aqueous solution).

Scheme 3.7 Tandem hydroformylation–acetalization with formalin and a rhodium catalyst with two different diphosphine ligands.

Scheme 3.8 Hydroformylation of alkynes with formaldehyde as syngas source in aqueous medium.

Scheme 3.9 Synthesis of naturally occurring piperidines by hydroformylation with paraformaldehyde.

Scheme 3.10 Generation of CO by the Ru-catalyzed reversed water gas shift (RWGS) reaction.

Scheme 3.11 Mechanism of the Ru-catalyzed reversed water gas shift (RWGS) reaction.

Figure 3.2 Water gas shift (WGS) reactor system (typical conditions: supported catalyst = 1.4–1.6 g;

p

CO

= 1–12 bar; ; total flow rate = 1.5–195 cm

3

min

−1

;

T

= 100–185 °C).

Scheme 3.12 Ru-catalyzed hydroformylation taking benefit from the reversed water gas shift (RWGS) reaction.

Scheme 3.13 Mechanism of Ru-catalyzed hydroformylation with carbon dioxide (outer circle: production of CO (and H

2

O) and inner circle: hydroformylation followed by hydrogenation).

Scheme 3.14 Tandem hydroformylation–hydrogenation reaction with carbon dioxide.

Figure 3.3 Ethylene hydroformylation with MeOH over a tandem catalyst.

Scheme 3.15 Hydroformylation using formic acid as hydrogen source.

Scheme 3.16 Hydroformylation of isomeric olefins using formic acid as hydrogen source.

Scheme 3.17 Ru-catalyzed conversion of methyl formate into methanol and syngas.

Scheme 3.18 Ru catalyzed hydroformylation of cyclohexene with methyl formate.

Scheme 3.19 One-pot hydroaminomethylation with methyl formate.

Scheme 3.20 Dehydrogenative decarbonylation of 2-naphthylmethanol and formation of gases as a function of time.

Scheme 3.21 Generation of syngas within two separate catalytic reactions via a coordinatively unsaturated iridium complex as connecting link.

Scheme 3.22 Combination of syngas generation from polyols and use in a subsequent hydroformylation.

Volume 2

Figure 4.1 Rate of hydroformylation of an olefin in relation to steric hindrance.

Scheme 4.1 Production of methacrolein via hydroformylation of ethylene.

Scheme 4.2

n

-Regioselective hydroformylation of propylene and important subsequent transformations.

Scheme 4.3 Iso-regioselective hydroformylation of propene.

Scheme 4.4 Sources of isomeric butenes, subsequent

n

-regioselective hydroformylation, and final transformation into 2-propyl-heptanol.

Scheme 4.5 Two-step process for

n

-regioselective hydroformylation of Raffinate II.

Scheme 4.6 Formation of isoprene or 2-alkyl butanoates via iso-selective hydroformylation and subsequent modifications.

Scheme 4.7

n

-Regioselective hydroformylation of various terminal olefins with Rh(BIPHEPHOS).

Scheme 4.8 Manufacture of fuel additives through hydroformylation/acetalization from renewable resources.

Scheme 4.9 Pathways to 1-undecene and 2-methyl-undecanal.

Scheme 4.10 Product distribution in the hydroformylation of 1,3-butadiene.

Scheme 4.11 Hydroformylation of 1,3-butadiene and subsequent transformations.

Scheme 4.12 Hydroformylation of piperylene.

Scheme 4.13 Differences in the hydroformylation of 1,3-butadiene and 1,3-pentadiene.

Scheme 4.14 Hydroformylation of isoprene.

Scheme 4.15 Hydroformylation of cyclopentadiene and dicyclopentadiene.

Scheme 4.16 Hydroformylation of 1,5-hexadiene to pimelaldehyde.

Scheme 4.17 Problems in and alternatives for the hydroformylation of alkynes.

Scheme 4.18 Hydroformylation of alkynes with a self-assembling Rh catalyst.

Scheme 4.19 Hydroformylation of acetylene with a nickel catalyst.

Scheme 4.20 Hydroformylation of alkynes with a homogeneous palladium catalyst.

Chapter 5: Tandem and Other Sequential Reactions Using a Hydroformylation Step

Figure 5.1 Alkylformyl subunit according to the synthon concept.

Chapter 6: Synthesis of Special Products via Hydroformylation

Figure 6.1 Structural correlation between a synthetic and a naturally occurring scent.

Scheme 6.1 Classes of organic compounds relevant to flavoring chemistry accessible via hydroformylation and alternative venues to aldehydes.

Figure 6.2 Different olefinic groups in olfactorius relevant natural compounds.

Figure 6.3 Cyclic mono- and sesquiterpenes bearing a single olefinic group.

Scheme 6.2 Preparation of terminal monoolefins via hydroformylation.

Scheme 6.3 Production of hexyl salicylate via hydroformylation.

Scheme 6.4 Synthesis of mushroom alcohol.

Scheme 6.5 Synthesis of α-hexyl cinnamaldehyde via different hydroformylation protocols.

Scheme 6.6 Hydroformylation of different terminal olefins.

Scheme 6.7 Synthesis of methylnonylacetaldehyde (MNA) and derivatives with interesting olfactorius properties via hydroformylation.

Scheme 6.8 Hydroformylation of α-pinene under different conditions and subsequent transformations.

Scheme 6.9 Production of enantiomerically pure 3-formyl-pinanes via hydroformylation.

Scheme 6.10 Hydroformylation of (−)-β-pinene with different catalytic systems.

Scheme 6.11 Hydroformylation of (−)-β-pinene in the presence of triethylformate or ethanol.

Figure 6.4 Camphene and precursor monoterpenes.

Scheme 6.12 Hydroformylation of camphene.

Figure 6.5 Side products observed in the Pt/Sn-catalyzed hydroformylation of camphene.

Scheme 6.13 Synthesis of Spirambrene® via hydroformylation of 2-carene.

Scheme 6.14 Hydroformylation of isomeric carenes in benzene or ethanol.

Scheme 6.15 Hydroformylation of β-cedrene.

Scheme 6.16 Hydroformylation of cyclooctene.

Scheme 6.17 Synthesis of vertral via hydroformylation.

Scheme 6.18 Synthesis and hydroformylation of bicyclo[3.3.0]-oct-2-ene.

Scheme 6.19 Synthesis of (

E

)-1-cyclopentylethyl but-2-enoate via hydroformylation of cyclopentene.

Scheme 6.20 Hydroformylation of β-citronellene.

Scheme 6.21 Hydroformylation of 5,7-dimethylocta-1,6-diene.

Scheme 6.22 Hydroformylation of 2,6-dimethylhepta-1,5-diene and 2,6-dimethylocta-1,5-diene.

Scheme 6.23 Hydroformylation of 3-methylocta-2,6-diene.

Scheme 6.24 Hydroformylation of polyolefins and subsequent hydrogenation.

Scheme 6.25 Pathways to 10-undecen-1-ol.

Scheme 6.26 Hydroformylation of 1,5-cyclooctadiene.

Scheme 6.27 Hydroformylation of 2,6-dimethyl-1,5-cyclooctadiene.

Scheme 6.28 Hydroformylation of dicyclopentadiene.

Figure 6.6 Limonene and some related compounds.

Scheme 6.29 Hydroformylation of (

R

)-(+)-limonene under different reaction conditions.

2

Scheme 6.30 Hydroformylation of (

R,R

)-

trans

-isolimonene in the presence of triethyl orthoformate.

Scheme 6.31 Synthesis of terpinolene aldehyde from different precursors and under different hydroformylation conditions.

Scheme 6.32 Hydroformylation of γ-terpinene.

Scheme 6.33 Hydroformylation of bicyclo[4.3.0]nona-3,7-diene.

Scheme 6.34 Hydroformylation of (−)-β-caryophyllene.

Scheme 6.35 Hydroformylation of caryophyllene oxide.

Scheme 6.36 Hydroformylation of isoprene.

Scheme 6.37 Hydroformylation of myrcene with different Rh catalysts.

Scheme 6.38 Hydroformylation of (

E

,

E

)-α-farnesene.

Scheme 6.39 Hydroformylation of α-terpinene.

Scheme 6.40 Hydroformylation of 2-methyldodec-11-en-2-ol.

Scheme 6.41 Preparation of hydroxycitronellal and related hydroxy aldehydes.

Scheme 6.42 Hydroformylation of 3,7-dimethylocten-1-en-7-ol.

Scheme 6.43 Hydroformylation of long-chain hydroxy diolefins and subsequent hydrogenation.

Scheme 6.44 Synthesis of plinol from linalool and subsequent transformations.

Scheme 6.45 Synthesis and hydroformylation of α-terpineol.

Scheme 6.46 Hydroformylation of (

S

)-(−)-perillyl alcohol.

Scheme 6.47 Hydroformylation of norbornenyl isopropanol.

Scheme 6.48 Hydroformylation/acetalization of linalool under different reaction conditions.

Scheme 6.49 Hydroformylation–hemiacetalization of (−)-myrthenol.

Scheme 6.50 Hydroformylation–hemiacetalization of isopulegol.

Scheme 6.51 Hydroformylation–acetalization–dehydration of (+)-8(15)-cedren-9-ol.

Scheme 6.52 Hydroformylation–acetalization of nerolidol.

Scheme 6.53 Synthesis of guaiazulene via hydroformylation.

Scheme 6.54 Hydroformylation of β-isophorone and subsequent reactions.

Scheme 6.55 Hydroformylation of carvone.

Scheme 6.56 Hydroformylation of dihydrocarvone.

Scheme 6.57

n

-Regioselective hydroformylation of styrene and subsequent hydrogenation.

Scheme 6.58 Hydroformylation of indene and subsequent hydrogenation.

Figure 6.7 Indanyl-2-carbaldehydes with structural similarities to Bourgeonal®.

Scheme 6.59 Synthesis of Florhydral® via hydroformylation.

Scheme 6.60 Hydroformylation of α-substituted styrenes.

Scheme 6.61 Hydroformylation of

p

-(isopropenyl)phenyl dimethylcarbinol.

Figure 6.8 Naturally occurring propenylarenes.

Scheme 6.62 Double bond isomers of propenylarenes.

Scheme 6.63 Preparation of anethole.

Figure 6.9 Prominent scents based on 3-aryl-2-methylpropanals.

Scheme 6.64 Hydroformylation of eugenol with different phosphine ligands.

Scheme 6.65 Hydroformylation of 1-aryl-prop-1-enes.

Scheme 6.66 Hydroformylation of different 1-aryl-prop-1-enes in methanol (for R

1

–R

3

compare Table 6.3).

Scheme 6.67 Preparation and hydroformylation of 1-aryl-enolethers.

Scheme 6.68 Asymmetric hydroformylation of 1-phenyl-prop-1-ene.

Scheme 6.69 Asymmetric hydroformylation of aryl propenes.

Scheme 6.70 Hydroformylation of α-branched aryl olefins.

Scheme 6.71 Substrates and hydroformylation of various olefins.

Scheme 6.72 Hydroformylation of vinyl-aryl ethers.

Scheme 6.73 Preparation of 4,7-dihydro-1,3-dioxepines and subsequent hydroformylation.

Scheme 6.74 Hydroformylation of the orange flower ether.

Scheme 6.75 Reductive hydroformylation of (+)-limonene.

Scheme 6.76 Hydroformylation–cyclization of (+)-limonene.

Scheme 6.77 Hydroformylation–(aldol condensation)–hydrogenation tandem reaction and possible chemical targets.

Scheme 6.78 Pd-catalyzed hydroformylation of alkynes and potential chemical targets.

Scheme 6.79 Challenges for hydroformylation in the future.

Chapter 7: Hydroformylation in Nonconventional Reaction Media

Figure 7.1 Phosphorus ligands linked to polymeric supports.

Scheme 7.1 Synthesis of a polymeric soluble hydroformylation catalyst by anion exchange.

Figure 7.2 Frequently used sulfonated phosphine ligands.

Figure 7.3 Solubility of olefins and their corresponding aldehydes in water.

Figure 7.4 Phosphine ligands with pH-dependent solubility properties.

Figure 7.5 Randomly methylated cyclodextrines used together with a trisulfonated diphenylphosphine ligand for the improvement of mass transfer.

Figure 7.6 Rate of the hydroformylation (indicated by decrease of syngas pressure) in the hydroformylation of 1-olefins with a rhodium TPPTS catalyst effected by adding [OMIM]Br (0.5 mol dm

−3

).

Scheme 7.2 Switchable catalyst system based on the ligand Tris-SwitchPhos.

Scheme 7.3 Degradation of a triarylphosphine in an aqueous medium.

Figure 7.7 Ligand concentration versus operating time in the Ruhrchemie/Rhône-Poulenc process.

Scheme 7.4 Reaction of an acidic hydroformylation catalyst with water.

Scheme 7.9 Aqueous two-phase hydroformylation with a water-soluble rhodium catalyst and an additional promoter ligand.

Scheme 7.5 Comparison of the rhodium-catalyzed hydroformylation of methyl acrylate in an organic and in an aqueous two-phase system.

Scheme 7.6 Hydroformylation of acrylates under SAPC conditions.

Scheme 7.7 Hydroformylation of 1-decene in water in the presence of methylated cyclodextrines.

Scheme 7.8 Hydroformylation of technical-grade methyl oleate in water in the presence of activated carbon.

Figure 7.8 Fluorinated solvents.

Figure 7.9 Miscibility diagrams of 1-decene/1

H

-perfluorooctane and

n

-undecanal/1

H

-perfluorooctane.

Figure 7.10 Trivalent phosphorus ligands used in rhodium-catalyzed hydroformylation in fluorous biphasic hydroformylation.

Scheme 7.10 Decomposition of fluorinated triaryl phosphites in the presence of aldehydes.

Figure 7.11 Schematic phase diagram of CO

2

with snapshots from the liquid/gas region to the supercritical region (a CO

2

-soluble rhodium complex is responsible for the bright orange color).

Scheme 7.11 Cobalt-catalyzed hydroformylation of propene in scCO

2

.

Scheme 7.12 Rhodium-catalyzed hydroformylation of

trans

-2-hexene in toluene or scCO

2

.

Scheme 7.13 Rh(PEt

3

)-catalyzed hydroformylation of 1-hexene in toluene or scCO

2

.

Figure 7.12 Phosphorus or fluorinated acetylacetone ligands and anions for cationic rhodium complexes specially designed for rhodium-catalyzed hydroformylation in supercritical carbon dioxide bearing fluoro-substituents.

Scheme 7.14 Asymmetric hydroformylation of styrene in scCO

2

with a specially designed (

R,S

)-BINAPHOS ligand.

Figure 7.13 Selective hydroformylation of 1-octene out of a mixture of 1-octene/1-octadecene (1 : 1) by taking benefit from different solubilities at different CO

2

pressures (HRh(CO)(TPPTS)

3

, CO/H

2

(20 bar), 80 °C, 20 h).

Scheme 7.15 First hydroformylation attempt in ionic liquids.

Figure 7.17 Typical cations and salts of ionic liquids and the order of 1-hexene solubility in [BMIM][X] in dependence on the anion X.

Figure 7.14 Halogen-free ionic liquids derived from sulfonates.

Figure 7.15 Turnover frequency of 1-hexene solubility in the ionic liquids. Reaction conditions: Rh(acac)(CO)

2

(0.075 mmol), 1-hexene/Rh = 800, TPPMS/Rh = 4, CO/H

2

= 2 MPa, 80 °C; TOF determined at 25% conversion of 1-hexene.

Figure 7.16 Ligands specially designed for the two-phase reaction in ionic liquids.

Scheme 7.16 Cobalt-containing ionic liquids and an activation mode for the precatalyst anion.

Scheme 7.17 Reaction of a phosphite ligand with a fluorinated anion.

Figure 7.18 Supported ionic liquid catalysis applied in the hydroformylation of 1-hexene (tppti = tri(

m

-sulfonyl)triphenyl phosphine tris(1-butyl-3-methyl-imidazolium) salt.

Figure 7.19 Schematic of the reactor system used for the continuous flow SILP reaction.

Figure 7.20 Possible interactions of Sulfoxantphos (

A

and

B

) and [BMIM][OctSO

4

] ionic liquid (

C

) on silica support [113].

Figure 21 Principle of temperature-dependent multicomponent solvent systems.

Scheme 7.18 Hydroformylation in a TMS system.

Chapter 8: Decarbonylation and Dehydrocarbonylation of Aldehydes

Scheme 8.1 Decarbonylation and dehydrocarbonylation.

Scheme 8.2 Rhodium-catalyzed decarbonylation of an α,β-unsaturated aldehyde.

Scheme 8.3 Rhodium-catalyzed decarbonylation of

n

-heptanal.

Scheme 8.4 Rhodium-catalyzed decarbonylation of heptanal with rhodium complexes bearing chelating diphosphine ligands.

Scheme 8.5 Synthesis of a rhodium triphos catalyst and the mechanism of the catalytic decarbonylation of aldehydes.

Scheme 8.6 Side products in the rhodium-catalyzed decarbonylation of pent-4-enal in the presence of ethylene.

Scheme 8.7 Decarbonylation of 1-nonanol by a tandem (Oppenhauer oxidation)–decarbonylation sequence.

Scheme 8.8 Rhodium-catalyzed decarbonylation of 3-methyl-3-phenylbutanal.

Scheme 8.9 Rhodium-catalyzed removal of a formyl group in the total synthesis of a steroid.

Scheme 8.10 Removal of a formyl group in the total synthesis of a neurosteroid analog.

Scheme 8.11 Rhodium(triphos)-catalyzed decarbonylation of aldehydes.

Scheme 8.12 Iridium-catalyzed decarbonylation of aldehydes.

Scheme 8.13 Rhodium-catalyzed decarbonylation of an aldehyde derived from a Diels–Alder reaction.

Figure 8.1 Gas–liquid continuous-flow decarbonylation of aldehydes with N

2

as stripping gas. (P = HPLC pump, SL = sample loop, M = mixer, RT = residence tube, HE = heat exchanger, and BPR = backpressure regulator).

Scheme 8.14 Rhodium-catalyzed dehydrocarbonylation–hydroformylation reaction.

Scheme 8.15 Cobalt-catalyzed decarbonylation of aryl substituted 1-propanols.

Scheme 8.16 Dehydroformylation of aldehydes.

Scheme 8.17 Mechanism of the dehydroformylation.

Scheme 8.18 Synthesis of (+)-yohimbenone and other products via dehydroformylation (arrows indicated the place of reaction).

Chapter 9: Selected Aspects of Production Processes

Figure 9.1 Principle of the JM process based on [4].

Figure 9.2 Simplified block flow diagram of the process. Explanations: (1.1)–(1.5): hydroformylation reactor; (2): cooler and liquid/gas separator; (3) gas recycling; (4) syngas compression; (5) cooling exchanger; (6) separators; (7) hydrogenation; (8) separator; and (9) downstreaming.

Scheme 9.1 Side reactions that consume reaction gas.

Scheme 9.2 Basic reactions of decobalting in the ExxonMobil process.

Figure 9.3 Setup for the CXL process according to [16].

Figure 9.4 Annual costs for different processes according to Ref. [16].

Scheme 9.3 Synthesis of POL-TPP.

Figure 9.5 Setup for a process for the hydroformylation of short-chain and long-chain olefins using heterogeneous catalyst systems based on porous organic ligands according to [20]b. Pressure controller (PC), flow indicator (FI), and pressure indicator (PI).

List of Tables

Chapter 3: Syngas and Alternative Syngas Sources

Table 3.1 Rh catalyzed hydroformylation of 1-octene with formaldehyde/H

2

a

Volume 2

Table 4.1 Large-scale hydroformylation processes of propylene under different conditions

Chapter 6: Synthesis of Special Products via Hydroformylation

Table 6.1 Hydroformylation of linear aliphatic monoolefins with Rh(BIPHEPHOS)

Table 6.2 Position of the CHO group after the hydroformylation of eugenol and isoeugenol as a function of temperature

Table 6.3 Hydroformylation of different 1-aryl-prop-1-enes

Table 6.4 Hydroformylation of allyl ethers and perfumery properties

Table 6.5 Hydroformylation of branched allyl ethers and perfumery properties

Chapter 7: Hydroformylation in Nonconventional Reaction Media

Table 7.1 Comparison of hydroformylation reaction of 1-hexene or 1-octene in different nonconventional reaction media

Chapter 9: Selected Aspects of Production Processes

Table 9.1 Specific investment in million $ according to [16]

Table 9.2 Data for the hydroformylation of 1-octene according to [21]

Armin Börner and Robert Franke

Hydroformylation

Fundamentals, Processes, and Applications in Organic Synthesis

Volume 1

 

Armin Börner and Robert Franke

Hydroformylation

Fundamentals, Processes, and Applications in Organic Synthesis

Volume 2

 

Authors

 

Armin Börner

Institut für Chemie

Universitä t Rostock

Albert-Einstein-Str. 3a

18059 Rostock

Germany

 

and

 

Leibniz-Institut für Katalyse

an der Universitä t Rostock e.V.

Albert-Einstein-Str. 29a

18059 Rostock

Germany

 

Robert Franke

Evonik Performance Materials GmbH

Paul-Baumann-Straße 1

45772 Marl

Germany

 

and

 

Lehrstuhl für Theoretische Chemie

Ruhr-Universitä t Bochum

44780 Bochum

Germany

 

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

 

Library of Congress Card No.: applied for

 

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

 

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed biblio-graphic data are available on the Internet at <http://dnb.d-nb.de>.

 

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

 

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form–by photoprinting, microfilm, or any other means–nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

 

Print ISBN: 978-3-527-33552-7

ePDF ISBN: 978-3-527-67796-2

ePub ISBN: 978-3-527-67795-5

Mobi ISBN: 978-3-527-67794-8

oBook ISBN: 978-3-527-67793-1

 

Cover Design Adam Design, Weinheim

... while in mathematics, presumably one's imagination may run riot without limit, in chemistry, one's ideas, however beautiful, logical, elegant, imaginative they may be in their own right, are simply without value unless they are actually applicable to the one physical environment we have - in short, they are only good if they work!

Robert Burns Woodward

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!