Introduction to Molecular Magnetism - Cristiano Benelli - E-Book

Introduction to Molecular Magnetism E-Book

Cristiano Benelli

0,0
102,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This first introduction to the rapidly growing field of molecular magnetism is written with Masters and PhD students in mind, while postdocs and other newcomers will also find it an extremely useful guide.
Adopting a clear didactic approach, the authors cover the fundamental concepts, providing many examples and give an overview of the most important techniques and key applications. Although the focus is one lanthanide ions, thus reflecting the current research in the field, the principles and the methods equally apply to other systems.
The result is an excellent textbook from both a scientific and pedagogic point of view.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 854

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

Preface

Chapter 1: Introduction

1.1 A Nano History of Molecular Magnetism

1.2 Molecules, Conductors, and Magnets

1.3 Origin of Molecular Magnetism

1.4 Playing with the Periodic Table

1.5 p Magnetic Orbitals

1.6 d Magnetic Orbitals

1.7 f Magnetic Orbitals

1.8 The Goals of Molecular Magnetism

1.9 Why a Book

1.10 Outlook

1.11 The Applications of Ln

1.12 Finally SI versus emu

References

Chapter 2: Electronic Structures of Free Ions

2.1 The Naked Ions

2.2 Spin–Orbit Coupling

2.3 Applying a Magnetic Field

References

Chapter 3: Electronic Structure of Coordinated Ions

3.1 Dressing Ions

3.2 The Crystal Field

3.3 The

aquo

Ions

3.4 The Angular Overlap Model

3.5 The Lantanum(III) with Phthalocyanine (Pc) and PolyOxoMetalates (POM)

3.6 Introducing Magnetic Anisotropy

References

Chapter 4: Coordination Chemistry and Molecular Magnetism

4.1 Introduction

4.2 Pyrazolylborates

4.3 Phthalocyanines

4.4 Cyclopentadiene and Cyclooctatetraene

4.5 Polyoxometalates (POMs)

4.6 Diketonates

4.7 Nitronyl-nitroxides (NITs)

4.8 Carboxylates

4.9 Schiff Bases

References

Chapter 5: Magnetism of Ions

5.1 The Curie Law

5.2 The Van Vleck Equation

5.3 Anisotropy Steps in

References

Chapter 6: Molecular Orbital of Isolated Magnetic Centers

6.1 Moving to MO

6.2 Correlation Effects

6.3 DFT

6.4 The Complexity of Simple

6.5 DFT and Single Ions

6.6 DOTA Complexes, Not Only Contrast

References

Chapter 7: Toward the Molecular Ferromagnet

7.1 Introduction

7.2 A Road to Infinite

7.3 Magnetic Interactions

7.4 Introducing Interactions: Dipolar

7.5 Spin Hamiltonians

7.6 The Giant Spin

7.7 Single Building Block

7.8 Multicenter Interactions

7.9 Noncollinearity

7.10 Introducing Orbital Degeneracy

References

Chapter 8: Molecular Orbital of Coupled Systems

8.1 Exchange and Superexchange

8.2 Structure and Magnetic Correlations: d Orbitals

8.3 Quantum Chemical Calculations of SH Parameters

8.4 Copper Acetate!

8.5 Mixed Pairs: Degenerate–Nondegenerate

8.6 f Orbitals and Orbital Degeneracy

References

Chapter 9: Structure and Properties of p Magnetic Orbitals Systems

9.1 Magnetic Coupling in Organics

9.2 Magnetism in Nitroxides

9.3 Thioradicals

9.4 Metallorganic Magnets

9.5 Semiquinone Radicals

9.6 NITR Radicals with Metals

9.7 Long Distance Interactions in Nitroxides

References

Chapter 10: Structure and Properties of Coupled Systems: d, f

10.1 d Orbitals

10.2 3d

10.3 4d and 5d

10.4 Introducing Chirality

10.5 f-d Interactions

10.6 A Model DFT Calculation

10.7 Magneto-Structural Correlations in Gd-Cu

10.8 f Orbital Systems and Orbital Degeneracy

References

Chapter 11: Dynamic Properties

11.1 Introductory Remarks

11.2 Spin–Lattice Relaxation and

T

1

11.3 Phonons and Direct Mechanism

11.4 Two Is Better than One

11.5 Playing with Fields

11.6 Something Real

11.7 Spin–Spin Relaxation and

T

2

References

Chapter 12: SMM Past and Present

12.1 Mn

12

, the Start

12.2 Some Basic Magnetism

12.3 Fe

4

Structure and Magnetic Properties

12.4 Fe

4

Relaxation and Quantum Tunneling

12.5

And

τ

0

?

12.6 Deep in the Tunnel

12.7 Magnetic Dilution Effects

12.8 Single Molecule Magnetism

References

Chapter 13: Single Ion Magnet (SIM)

13.1 Why Single

13.2 Slow Relaxation in Ho in Inorganic Lattice

13.3 Quantum Tunneling of the Magnetization: the Role of Nuclei

13.4 Back to Magnets

13.5 The Phthalocyanine Family: Some More Chemistry

13.6 The Anionic Double Decker

13.7 CF Aspects

13.8 The Breakthrough

13.9 Multiple Deckers

13.10 The Polyoxometalate Family

13.11 More SIM

13.12 Perspectives

References

Chapter 14: SMM with Lanthanides

14.1 SMM with Lanthanides

14.2 More Details on SMM with Lanthanides

14.3 New Opportunities

References

Chapter 15: Single Chain Magnets (SCM) and More

15.1 Why 1D

15.2 The Glauber Model

15.3 SCM: the d and p Way

15.4 Spin Glass

15.5 Noncollinear One-dimensional Systems

15.6 f Orbitals in Chains: Gd

15.7 f Orbitals in Chains: Dy

15.8 Back to Family

References

Chapter 16: Magic Dysprosium

16.1 Exploring Single Crystals

16.2 The Role of Excited States

16.3 A Comparative Look

16.4 Dy as a Perturbation

References

Chapter 17: Molecular Spintronics

17.1 What?

17.2 Molecules and Mobile Electrons

17.3 Of Molecules and Surfaces

17.4 Choosing Molecules and Surfaces

17.5 Is it Clean?

17.6 X-Rays for Magnetism

17.7 Measuring Magnetism on Surfaces

17.8 Transport through Single Radicals

17.9 Pc Family

17.10 Mn

12

Forever

17.11 Hybrid Organic and f Orbitals

17.12 Magnetically Active Substrates

17.13 Using Nuclei

17.14 Some Device at Last

References

Chapter 18: Hunting for Quantum Effects

18.1 From Classic to Quantum

18.2 Basic QIP

18.3 A Detour

18.4 Endohedral Fullerenes

18.5 Criteria for QIP

18.6 Starting from Inorganic

18.7 Molecular Rings

18.8 V

15

18.9 Qubit Manipulation

18.10 Some Philosophy

References

Chapter 19: Controlling the Growth

19.1 Introduction

19.2 Metal–Organic Frameworks MOFs

19.3 From Nano to Giant

19.4 Molybdates

19.5 To the Limit

19.6 Controlling Anisotropy

19.7 Cluster with Few Lanthanides

19.8 Analyzing the Magnetic Properties

19.9 Two-Dimensional Structures

References

Chapter 20: ESR

20.1 A Bird's Eye View of ESR of Ln

20.2 Gd in Detail

20.3 Gd with Radicals

20.4 Including Orbit

20.5 Involving TM

20.6 Ln Nicotinates

20.7 Measuring Distances

References

Chapter 21: NMR

21.1 NMR of Rare Earth Nuclides

21.2 NMR of Lanthanide Ions in Solution

21.3 Lanthanide Shift Reagents (LSR)

References

Chapter 22: Magnetic Resonance Imaging

22.1 Chemical Exchange Saturation Transfer (CEST)

References

Chapter 23: Some Applications of MM

23.1 Magnetocaloric Effect

23.2 Luminescence

References

Appendix A

Appendix B

Index

End User License Agreement

Pages

xi

xii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

182

183

184

185

186

187

181

188

189

190

191

192

193

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

217

218

220

221

219

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

244

245

246

247

248

249

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

395

396

397

398

399

400

401

402

403

404

405

406

407

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Guide

Cover

Table of Contents

Preface

Begin Reading

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 2.1

Figure 2.2

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 4.1

Figure 4.2

Scheme 4.1

Scheme 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Scheme 4.3

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Scheme 4.4

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 9.1

Figure 9.2

Figure 9.3

Scheme 9.1

Figure 9.4

Figure 9.5

Scheme 9.2

Figure 9.6

Figure 9.7

Figure 9.8

Scheme 9.3

Figure 9.9

Figure 9.10

Figure 9.11

Scheme 9.4

Figure 9.12

Figure 9.13

Figure 9.14

Figure 9.15

Figure 9.16

Figure 9.17

Scheme 9.5

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Figure 12.11

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

Figure 13.9

Figure 13.10

Figure 13.11

Figure 13.12

Figure 13.13

Scheme 14.1

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Figure 14.5

Figure 14.6

Figure 14.7

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Scheme 15.1

Scheme 15.2

Figure 15.10

Scheme 15.3

Figure 15.11

Scheme 15.4

Figure 15.12

Figure 15.13

Figure 15.14

Figure 15.15

Figure 15.16

Figure 16.1

Figure 16.2

Scheme 16.1

Figure 16.3

Figure 16.4

Figure 16.5

Scheme 16.2

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10

Figure 16.11

Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Scheme 17.1

Figure 17.10

Scheme 17.2

Figure 17.11

Figure 17.12

Figure 17.13

Figure 17.14

Figure 17.15

Figure 17.16

Figure 17.17

Figure 17.18

Figure 17.19

Figure 18.1

Figure 18.2

Figure 18.3

Figure 18.4

Figure 18.5

Figure 18.6

Figure 18.7

Figure 18.8

Figure 18.9

Figure 18.10

Figure 19.1

Figure 19.2

Figure 19.3

Figure 19.4

Figure 19.5

Figure 19.6

Figure 19.7

Figure 19.8

Figure 19.9

Figure 19.10

Figure 19.11

Figure 19.12

Figure 19.13

Figure 19.14

Figure 19.15

Figure 19.16

Figure 19.17

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.6

Figure 20.7

Figure 20.8

Figure 20.9

Figure 20.11

Figure 20.12

Figure 21.1

Figure 21.2

Figure 22.1

Scheme 22.1

Scheme 22.2

Figure 22.2

Figure 22.3

Figure 23.1

Figure 23.2

Figure 23.3

Figure 23.4

List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 5.1

Table 5.2

Table 5.3

Table 6.1

Table 6.2

Table 6.3

Table 7.1

Table 7.2

Table 7.3

Table 8.1

Table 8.2

Table 9.1

Table 9.2

Table 10.1

Table 10.2

Table 10.3

Table 10.4

Table 10.5

Table 12.1

Table 12.2

Table 12.3

Table 12.4

Table 13.1

Table 13.2

Table 13.3

Table 13.4

Table 14.1

Table 14.2

Table 15.1

Table 15.2

Table 15.3

Table 15.4

Table 15.5

Table 16.1

Table 16.2

Table 16.3

Table 18.1

Table 19.1

Table 19.2

Table 20.1

Table 20.2

Table 20.3

Table 20.4

Table 20.5

Table 20.6

Table 20.7

Table 21.1

Table 21.2

Table 22.1

Table 22.2

Table 23.1

Table 23.2

Related Titles

Layfield, R.A., Murugesu, M. (eds.)

Lanthanides and Actinides in Molecular Magnetism

2015

Print ISBN: 978-3-527-33526-8 (Also available in a variety of electronic formats)

Hilzinger, R., Rodewald, W.

Magnetic Materials

Fundamentals, Products, Properties, Applications

2013

Print ISBN: 978-3-895-78352-4

Cullity, B.D., Graham, C.D.

Introduction to Magnetic Materials

2nd Edition

2009

Print ISBN: 978-0-470-38631-6

Bruce, D.W, O'Hare, D., Walton, R.I. (eds)

Molecular Materials

2010

Print ISBN: 978-0-470-98677-6 (Also available in a variety of electronic formats)

Cristiano Benelli and Dante Gatteschi

 

Introduction to Molecular Magnetism

From Transition Metals to Lanthanides

 

 

 

 

 

 

The Authors

Prof. Dr. Cristiano Benelli

University of Florence

Department of Industrial Engineering

Via di S. Marta 3

50139 Florence

Italy

Prof. Dr. Dante Gatteschi

University of Florence

Department of Chemistry

Via della Lastruccia 3

50019 Sesto Fiorentino

Italy

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co.

KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33540-4

ePDF ISBN: 978-3-527-69056-5

ePub ISBN: 978-3-527-69055-8

Mobi ISBN: 978-3-527-69045-9

oBook ISBN: 978-3-527-69054-1

Preface

The last years have seen an explosive increasing interest for the development of molecular magnetism, that is, for the magnetic properties of materials based on molecules. These materials have properties, which are related to those of the classic magnets, based on inorganic materials such as metals, just think about iron, or oxides such as magnetite but have interesting properties also for simple molecules. It was in the 1980s of last century that it was realized that magnetism developed with molecules could give rise to novel properties. In particular, it was discovered that beyond bulk magnetism mentioned earlier, it was possible to make new magnetic materials in which chemical engineering played a major role. The new field was called Molecular Magnetism (MM) and gave rise to new physics of which single molecule magnets (SMM) and single chain magnets (SCM) were understood by many researchers as a breakthrough to new materials.

The development of MM required a chemical background, which was not easily available to physicists, and a physical background, which was hard to understand for chemists. The field actually developed, thanks to the efforts of pioneers who explored the new field and translated the awkward local languages in something that could be understood by everybody. As will be discussed in the present book, it is tempting to identify the book Magneto-Structural Correlations in Exchange Coupled Systems edited by R. D. Willet, D. Gatteschi, and O. Kahn, with the first attempt to develop a common language between chemists and physicists who explored Molecular Magnetism. From a more chemistry-based approach, Kahn's book Molecular Magnetism has been the unique tool allowing chemists to understand magnetism. There have been many other edited books covering the various aspects of the new research area, but it must be highlighted that the book that can be considered as the predecessor of the present one was Molecular Nanomagnets by D. Gatteschi, R. Sessoli, and J. Villain, which was focused on the role of the size of molecular magnets in determining the properties.

In the last few years, there has been an exponential growth of molecular magnets based on lanthanide ions, which had been neglected at the beginning. Having been among the first to explore molecular magnets we conceived the idea of writing a book, which reported the unique approach needed for Ln. The original format was limited to these ions, but the contact with the publisher convinced us to write something with a wider appeal. The title then became Introduction to Molecular Magnets, which highlights that the book wants to cover the basic aspects of the field, and the specification “from transition metals to rare earths” clarifies that the dominant interest is on Ln, transition metals being the starting point.

The book has benefited from the comments and corrections provided by several colleagues, namely Roberta Sessoli, Federico Totti, Mauro Perfetti, Lorenzo Sorace, Lapo Bogani, and Alessandro Lascialfari. We thank Alessandro Barbieri and Matteo Mannini for their help in preparing photos and figures.

Given the age of the authors, the book is dedicated to our families: to sons and daughters, Luca and Clara Benelli, Silvia and Alessandra Gattesch, the grand children Duccio Benelli and Marta and Lorenzo Mencaroni and of course to the grandmothers Rossella and Ninetta.

Florence, January 6, 2015

1Introduction

1.1 A Nano History of Molecular Magnetism

The two terms molecular and magnetism that appear in the title of this book are here used in a well-defined scientific and technological frame; on the other hand, both of them are also often used, with different meanings, that influences how the scientific version is understood by specialists. Here we will not present a history of the concept of a molecule or a magnet, but we will highlight some general concepts in a scientific field that is developing fast. In order to be understood, it is necessary to make clear immediately what is meant by the title.

Actually, there is a specification (“From transition metals to lanthanides”) which is meant to indicate that the present book starts from what has been done in the last few years mainly using transition-metal ions. The novelty is the focus on lanthanides. Another possible subtitle could be “An f orbital approach to molecular magnetism”.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!