132,99 €
Critical overviews from the front line of ionic liquids research Ionic Liquids Completely UnCOILed: Critical Expert Overviews concludes the discussion of new processes and developments in ionic liquid technology introduced in the previously published volumes, Ionic Liquids UnCOILed and Ionic Liquids Further UnCOILed. The goal of this volume is to provide expert overviews that range from applied to theoretical, synthetic to structural, and analytical to toxicological. The value of book lies in the authors' expertise, and their willingness to share it with the reader. Written by an international group of chemists, the book presents eleven overviews of specific areas of ionic liquid chemistry including: * What is an Ionic Liquid? * Molecular modelling * Crystallography * Chemical engineering of ionic liquid processes * Toxicology and Biodegradation * Organic reaction mechanisms Edited by Professor Ken Seddon and Dr Natalia Plechkova, world leaders in the field of ionic liquids, this book is a must read for R&D chemists, educators, and students, and for commercial developers of environmentally sustainable processes. It offers insight and appreciation for the direction in which the field is going, while also highlighting the best published works available, making it equally valuable to new and experienced chemists alike.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1061
Veröffentlichungsjahr: 2015
Cover
Title Page
Coil Conferences
Preface
Acknowledgements
Contributors
Abbreviations
1 What Is an Ionic Liquid?
1.1 INTRODUCTION
1.2 DILUTE AQUEOUS SOLUTIONS
1.3 IONIC LIQUIDS
1.4 CONCLUSION
REFERENCES
2 NMR Studies of Ionic Liquids
2.1 INTRODUCTION
2.2 RELAXATION
2.3 NUCLEAR OVERHAUSER EFFECT
2.4 PULSED FIELD-GRADIENT NMR SPECTROSCOPY
2.5 RECENT DEVELOPMENTS AND FUTURE DIRECTIONS
2.6 SUMMARY
REFERENCES
3 ‘Unusual Anions’ as Ionic Liquid Constituents
3.1 INTRODUCTION
3.2 VARIABLES RESPONSIBLE FOR THE CHANGE OF IONIC LIQUID PROPERTIES
3.3 PHOSPHATES AND AMIDES
3.4 BORATES
3.5 WEAKLY COORDINATING ANIONS – CARBORATES, FLUOROALKOXYALUMINATES AND FLUOROALKOXYBORATES
3.6 MAGNETIC IONIC LIQUIDS
3.7 INORGANIC IONIC LIQUIDS
3.8 SUMMARY
REFERENCES
4 Investigating the Structure of Ionic Liquids and Ionic Liquid
4.1 INTRODUCTION
4.2 STRUCTURE OF SIMPLE MOLTEN SALTS
4.3 STRUCTURE OF PURE IONIC LIQUIDS
4.4 STRUCTURE OF IONIC LIQUIDS AND SOLUTES
4.5 HETEROGENEITY IN IONIC LIQUID STRUCTURE
REFERENCES
5 Molecular Modelling of Ionic Liquids
5.1 INTRODUCTION
5.2 FORCE FIELD DEVELOPMENT: FELDER/
畑
(HATAKE)/PADDOCKS
5.3 FLUID-PHASE ORGANISATION: STRUKTUR/KŌZŌ/STRUCTURE
5.4 IONIC LIQUID MODELLING: EIGENSCHAFTEN/SEISHITSU/PROPERTIES
5.5 CONCLUSION
REFERENCES
6 Chemical Engineering of Ionic Liquid Processes
6.1 GENERAL ASPECTS OF CHEMICAL ENGINEERING WITH IONIC LIQUIDS
6.2 CATALYTIC APPLICATIONS INVOLVING STRONGLY ACIDIC IONIC LIQUIDS
6.3 IMMOBILISATION CONCEPTS FOR TRANSITION METAL CATALYSTS USING IONIC LIQUIDS
6.4 SCILL
6.5 STABILISATION AND IMMOBILISATION OF NANOPARTICLES IN IONIC LIQUIDS
6.6 IONIC LIQUIDS IN SEPARATION PROCESSES
6.7 CONCLUSIONS
REFERENCES
7 Vibrational Spectroscopy of Ionic Liquid Surfaces
7.1 INTRODUCTION
7.2 VIBRATIONAL SPECTROSCOPY
7.3 AIR–LIQUID INTERFACES
7.4 ROOM-TEMPERATURE IONIC LIQUID MIXTURES
7.5 LIQUID–SOLID SURFACES
REFERENCES
8 Raman Spectroscopy and the Heterogeneous Liquid Structure in Ionic Liquids
8.1 INTRODUCTION
8.2 RAMAN SPECTROSCOPY FOR IONIC LIQUID STUDIES
8.3 ROTATIONAL ISOMERISM IN IONIC LIQUID
8.4 THERMAL DIFFUSION DYNAMICS AND HETEROGENEOUS LIQUID STRUCTURE IN IONIC LIQUIDS
8.5 WATER IN IONIC LIQUIDS
8.6 CONCLUDING REMARKS
ACKNOWLEDGEMENTS
REFERENCES
9 (Eco)Toxicology and Biodegradation of Ionic Liquids
9.1 INTRODUCTION
9.2 THE TOXICOLOGY OF IONIC LIQUIDS – BEYOND THE ‘SIDE CHAIN EFFECT’
9.3 BIODEGRADABILITY OF IONIC LIQUIDS
9.4 CONCLUSION
REFERENCES
10 Ionic Liquids and Organic Reaction Mechanisms
10.1 INTRODUCTION
10.2 SOLVENT EFFECTS ON THE RATES AND MECHANISMS OF CHEMICAL REACTIONS
10.3 COMPETING MECHANISMS
10.4 CONCLUSIONS
REFERENCES
11 Crystallography of Ionic Liquids
11.1 INTRODUCTION
11.2 CRYSTALLINITY AND MELTING PHENOMENA
11.3 COMPONENT ANIONS AND CATIONS
11.4 PROTIC IONIC LIQUIDS
11.5 METAL-CONTAINING IONIC LIQUIDS
11.6 ENERGETIC IONIC LIQUIDS
11.7 CHIRAL IONIC LIQUIDS
11.8 MULTIPLY CHARGED ANIONS AND CATIONS
11.9 HALIDES, POLYHALIDES AND PSEUDOHALIDES
11.10 OXOANIONS AND THEIR ESTERS
11.11 [EX
4
]
−
OR [E
2
X
7
]
−
11.12 [EX
6
]
−
11.13 SALTS OF BIS(SULFONYL)AMIDES, [N(SO
2
R)
2
]
−
11.14 SULFONATES, [RSO
3
]
−
11.15 CARBOXYLATES
11.16 [ER
4
]
+
AND [E′R
3
]
+
11.17 PYRIDINIUM SALTS
11.18 IMIDAZOLIUM SALTS
11.19 SALTS OF CARBON-, BORON-, HALOGEN- AND PNICTOGEN-CENTRED CATIONS AND OF SULFUR- AND ARSENIC-CONTAINING HETEROCYCLES
11.20 TRENDS IN THE RELATIONSHIP BETWEEN
U
L
AND MELTING TEMPERATURE
11.21 CONCLUSIONS
11.22 ADDENDUM
ACKNOWLEDGEMENTS
REFERENCES
Index
End User License Agreement
Chapter 03
TABLE 3.1 Selected Physical Properties of Some Amide-Based Ionic Liquids
TABLE 3.2 Melting Points, Viscosity and Specific Conductivity of Perfluoralkyltrifluoroborates
TABLE 3.3 Selected Physical Properties of [Al(hfip)
4
]
−
Ionic Liquids
TABLE 3.4 Selected Physical Properties of Tetrahaloferrate Ionic Liquids
TABLE 3.5 Selected Physical Properties of Lanthanide-based Ionic Liquids
TABLE 3.6 Magnetic Properties of Some Dysprosium-Based Ionic Liquids
Chapter 06
TABLE 6.1 Selected Properties of Ionic Liquids of Relevance for Applications in Chemical Engineering
TABLE 6.2 Thermodynamic Equilibrium Parameters of Reactions Occurring in Chloroaluminate Ionic Liquid [12]
TABLE 6.3 Comparison of SILP and SCILL Catalysts
Chapter 07
TABLE 7.1 Vibrational Peak Assignments for [C
4
mim][BF
4
]
Chapter 10
TABLE 10.1 The Effect of Changing Solvent on Nucleophilic Substitution Reactions
TABLE 10.2 LSER Correlations for ln(
k
2
) Obtained for Butylamines with Methyl 4-Nitrobenzenesulfonate in [C
4
C
1
pyrr][NTf
2
], [C
4
C
1
pyrr][OTf], [C
4
C
1
im][OTf], Dichloromethane and Ethanenitrile [7]
TABLE 10.3 LSER Correlations for ln(
k
2
) Obtained for Some Anionic Nucleophiles in [C
4
mim][NTf
2
], [C
4
mim][OTf], [C
4
C
1
pyrr][NTf
2
], DMSO, CH
2
Cl
2
and MeOH
TABLE 10.4 LSERs for Reactions of Butylamines with [4-NO
2
PhS(CH
3
)
2
]
+
Chapter 11
TABLE 11.1 Room-Temperature Ionic Liquids (m.pt. ≤ 30°C)
TABLE 11.2 Ionic Liquids: 30°C < m.pt. < 100°C
TABLE 11.3 Salts with m.pt. 100°C to
ca
. 110°C
TABLE 11.4 Ionic Liquid Anions
TABLE 11.5 Ionic Liquid Cations
TABLE 11.6 Protic Ionic Liquids
TABLE 11.7 Wholly Inorganic Ionic Liquids
TABLE 11.8 Group 1 Metal-Containing Ionic Liquids
TABLE 11.9 Coordination Complex Ionic Liquids
TABLE 11.10 Lanthanide and Actinide-Containing Ionic Liquids
TABLE 11.11 Metalloanionic Ionic Liquids
TABLE 11.12 Energetic Salts
TABLE 11.13 Salts of Multiply Charged Ions
TABLE 11.14 Halides, Poly- and Interhalides and Pseudohalides
TABLE 11.15 Oxoanions and Their Esters
TABLE 11.16 [EX
4
]
−
and Related Anions
TABLE 11.17 [EX
6
]
–
and Related Anions
TABLE 11.18 Sulfonyl and Phosphonyl Amides
TABLE 11.19 Alkyl- and Arylsulfonates
TABLE 11.20 Carboxylates
TABLE 11.21 [ER
4
]
+
and [ER
3
]
+
Ionic Liquids
TABLE 11.22 Pyridinium and Related Salts
TABLE 11.23 Salts of Imidazolium Cations
TABLE 11.24 Additional Ionic Liquids
Chapter 01
Figure 1.1 Schematic of the melting and charge transport processes in an ionic liquid.
Figure 1.2 Molar conductivity of ionic liquid mixtures with various molecular solvents as a function of their mole fraction. The curves represent: [C
2
mim][BF
4
]-propylene carbonate; [C
2
mim][BF
4
]-
N
-methylformamide; [C
2
mim][BF
4
]-water;
[C
3
mim]Br-propylene carbonate; ♦ [C
3
mim]Br-water.
Figure 1.3 Walden plot (upper) and modified Walden plot (lower) for a variety of ionic liquids. For the upper curve, (A) is the ideal Walden plot line for KCl, (B) is the Walden plat taking account of ionic size, and (C) is the Walden plot if the conductivity was only 10% of the ideal value.
Figure 1.4 Comparison of the actual case of diffusion in an ionic liquid and the model from which the Stokes–Einstein equation is derived.
Figure 1.5 Plot of distance parameter, calculated from Equation 1.3 as a function of temperature, for 1-ferrocenylmethylimidazolium bis{(trifluoromethyl)sulfonyl}amide, [FcC
1
mim][NTf
2
], in a variety of ionic liquids. The points represent solutions in: [C
2
mim][NTf
2
]; [C
4
mim][NTf
2
]; [C
8
mim][NTf
2
];
[C
4
mim][BF
4
]; ♦ [C
8
mim][BF
4
].
Chapter 02
Figure 2.1 A plot of the general form of
T
1
and
T
2
relaxation times versus correlation time (
τ
c
).
Figure 2.2 Common PFG-NMR diffusion experiment pulse sequences: above spin-echo (SE) and below stimulated spin-echo (STE). Gradient pulses, of length
δ
, are separated by the diffusion time Δ.
Figure 2.3 Typical experimental data from a PFG-NMR diffusion experiment with the fitted Stejskal–Tanner equation (Eq. 2.5 shown as the line).
Figure 2.4 Basic schematic of a typical diffusion probe illustrating the origin of convection.
Figure 2.5 The dependence of
1
H diffusion coefficient on diffusion time (Δ) and sample volume at 373 K. NMR tubes of 5 mm (o.d.) were filled with [C
3
mpyr][NTf
2
] to a height of either 5 or 40 mm – the intercept provides the true diffusivity. The dry (<100 ppm H
2
O) ionic liquid was packed and sealed under an N
2
atmosphere (<10 ppm H
2
O). Measurements were performed on a 300 MHz Bruker Avance NMR spectrometer with a Diff30 diffusion probe [48].
Figure 2.6 The amount of
1
H convective flow included in the diffusion measurements with temperature using 40 mm sample height in a 5 mm (o.d) NMR tube. Taken with neat [C
3
mpyr][NTf
2
] using Δ = 10 ms. The dry (<100 ppm H
2
O) ionic liquid was packed and sealed in an N
2
atmosphere (<10 ppm H
2
O). Lines are an exponential fit to guide the eye. Measurements were performed on a 300 MHz Bruker Avance NMR spectrometer with a Diff30 diffusion probe [48].
Chapter 03
Figure 3.1 Chemical structures of some (modified) phosphate anions: (a) hexafluorophosphate, (b) trifluorotris(pentafluoroethyl)phosphate, [FAP] and (c) tetrafluoro(oxalato)phosphate.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
