JavaScript and jQuery for Data Analysis and Visualization - Jon Raasch - E-Book

JavaScript and jQuery for Data Analysis and Visualization E-Book

Jon Raasch

0,0
28,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Go beyond design concepts--build dynamic data visualizations using JavaScript JavaScript and jQuery for Data Analysis and Visualization goes beyond design concepts to show readers how to build dynamic, best-of-breed visualizations using JavaScript--the most popular language for web programming. The authors show data analysts, developers, and web designers how they can put the power and flexibility of modern JavaScript libraries to work to analyze data and then present it using best-of-breed visualizations. They also demonstrate the use of each technique with real-world use cases, showing how to apply the appropriate JavaScript and jQuery libraries to achieve the desired visualization. All of the key techniques and tools are explained in this full-color, step-by-step guide. The companion website includes all sample codes used to generate the visualizations in the book, data sets, and links to the libraries and other resources covered. * Go beyond basic design concepts and get a firm grasp of visualization approaches and techniques using JavaScript and jQuery * Discover detailed, step-by-step directions for building specific types of data visualizations in this full-color guide * Learn more about the core JavaScript and jQuery libraries that enable analysis and visualization * Find compelling stories in complex data, and create amazing visualizations cost-effectively Let JavaScript and jQuery for Data Analysis and Visualization be the resource that guides you through the myriad strategies and solutions for combining analysis and visualization with stunning results.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 512

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

PART I: The Beauty of Numbers Made Visible

Chapter 1: The World of Data Visualization

Bringing Numbers to Life

Applications of Data Visualization

Web Professionals: In the Thick of It

What Tech Brings to the Table

Summary

Chapter 2: Working with the Essentials of Analysis

Key Analytic Concepts

Working with Sampled Data

Detecting Patterns with Data Mining

Projecting Future Trends

Summary

Chapter 3: Building a Visualization Foundation

Exploring the Visual Data Spectrum

Making Use of the HTML5 Canvas

Integrating SVG

Summary

Part II: Working with JavaScript for Analysis

Chapter 4: Integrating Existing Data

Reading Data from Standard Text Files

Incorporating XML Data

Displaying JSON Content

Summary

Chapter 5: Acquiring Data Interactively

Using HTML5 Form Controls

Maximizing Mobile Forms

Summary

Chapter 6: Validating Your Data

Server-Side Versus Client-Side Validation

Native HTML5 Validation

jQuery Validation Engine

Summary

Chapter 7: Examining and Sorting Data Tables

Outputting Basic Table Data

Assuring Maximum Readability

Including Computations

Using the DataTables Library

Relating a Data Table to a Chart

Summary

Chapter 8: Statistical Analysis on the Client Side

Statistical Analysis with jStat

Rendering Probability Distributions with Flot

Summary

Part III: Visualizing Data Programmatically

Chapter 9: Exploring Charting Tools

Creating HTML5 Canvas Charts

Starting with Google Charts

Summary

Chapter 10: Building Custom Charts with Raphaël

Introducing Raphaël

Working with GRaphaël

Extending Raphaël to Create Custom Charts

Summary

Chapter 11: Introducing D3

Getting Started

D3 Helper Functions

D3 Helper Layouts

Summary

Chapter 12: Incorporating Symbols

Working with SVG Symbols with D3

Canvas Symbols with Ignite UI igDataChart

Summary

Chapter 13: Mapping Global, Regional, and Local Data

Working with Google Maps

Customizing Maps with Iconography

Plotting Data on Choropleth Maps

Summary

Chapter 14: Charting Time Series with Ignite UI igDataChart

Working with Stocks

Implementing Ignite UI igDataChart

Plotting Real-Time Data

Plotting Massive Data

Summary

Part IV: Interactive Analysis and Visualization Projects

Chapter 15: Building an Interconnected Dashboard

The U.S. Census API

Rendering Charts

Creating the Dashboard

Connecting Components with Backbone

Next Steps

Summary

Chapter 16: D3 in Practice

Making D3 Look Perfect

Working with Axes

Working with the Voronoi Map

Making Reusable Visualizations

Summary

Introduction

What's in This Book

Who This Book Is For

Conventions

Companion Website

Errata

p2p.wrox.com

Advertisement

End User License Agreement

Pages

iv

v

vi

vii

ix

xix

xx

xxi

xxii

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

73

74

75

76

77

79

80

81

82

83

84

85

86

87

88

89

90

91

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

Guide

Cover

Table of Contents

PART I: The Beauty of Numbers Made Visible

Begin Reading

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 2.1

Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 3.26

Figure 3.27

Figure 3.28

Figure 3.29

Figure 3.30

Figure 3.31

Figure 3.32

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 5.1

Figure 5.2

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10

Figure 9.11

Figure 9.12

Figure 9.13

Figure 9.14

Figure 9.15

Figure 9.16

Figure 9.17

Figure 9.18

Figure 9.19

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 10.8

Figure 10.9

Figure 10.10

Figure 10.11

Figure 10.12

Figure 10.13

Figure 10.14

Figure 10.15

Figure 10.16

Figure 10.17

Figure 10.18

Figure 10.19

Figure 10.20

Figure 10.21

Figure 10.22

Figure 10.23

Figure 10.24

Figure 10.25

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 11.9

Figure 11.10

Figure 11.11

Figure 11.12

Figure 11.13

Figure 11.14

Figure 11.15

Figure 11.16

Figure 11.17

Figure 11.18

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Figure 12.11

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

Figure 13.9

Figure 13.10

Figure 13.11

Figure 13.12

Figure 13.13

Figure 13.14

Figure 13.15

Figure 13.16

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Figure 14.5

Figure 14.6

Figure 14.7

Figure 14.8

Figure 14.9

Figure 14.10

Figure 14.11

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.5

List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 3.1

Table 3.2

PART IThe Beauty of Numbers Made Visible

Chapter 1: The World of Data Visualization

Chapter 2: Working with the Essentials of Analysis

Chapter 3: Building a Visualization Foundation

Chapter 1The World of Data Visualization

What's in This Chapter

Overview of chart design options

Comparison of different business applications for data visualization

Rundown of technological advancements that have made data visualization what it is today

When thinking about data visualization, it's hard to resist the comparison to natural metamorphosis. Consider raw data as the caterpillar: functional, multi-faceted, able to get from here to there, but a little ungainly and really appreciated only by a select few. After data is transformed via visualization, it becomes the butterfly: sleek, agile, and highly recognizable to the point of inspiring and evoking an emotional response. The world of data visualization is an ecosystem unto itself, constantly spawning new nodes of details that—under the proper nourishing conditions—evolve into relatable depictions that consolidate concepts into an understandable, and hopefully compelling, form.

And where does the web professional fit in this metaphor? Why, they are the spinners and caretakers of the cocoon that transforms raw numbers into meaningful representation, of course. Putting the linguistic paraphrasing aside, web designers and developers are a vital component in visualizing data. Naturally, the current and evolving technological landscape has made this role possible—and increasingly efficient.

Overall, JavaScript and jQuery for Data Analysis and Visualization serves as a practical field guide to the robust world of data visualization, from the acquisition and nurturing of data to its transfiguration into the optimal visual format. This chapter is intended to provide an overview of the present environment, highlighting its capabilities and limitations and discussing how you, the web professional, are a key player in visualizing data.

Bringing Numbers to Life

Appreciating numeric data can be a challenge. Data visualization with relational graphics and evocative imagery helps make raw data meaningful. But before you can transform the data into a meaningful representation, you have to get it first.

Acquiring the Data

The data sphere is enormous and growing dramatically, if not exponentially, every day. Data is streaming in from everywhere—and when you consider that the Mars Rover, Curiosity, continually sends its data findings back to Earth, you understand that “everywhere” is no exaggeration.

With the tremendous amount of data already available, its acquisition is often just a matter of logistics. If the information is in a non-digital form—that is, written records—it will need to be transcribed into the proper format. Should the desired data be accessible digitally, it may need to be converted from its current structure to one compatible with the display or visualization application.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!