Kommen drei Logiker in eine Bar... - Holger Dambeck - E-Book

Kommen drei Logiker in eine Bar... E-Book

Holger Dambeck

0,0
8,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Rechnen Sie mit einer Unbekannten! Nach seinen Spiegel-Bestsellern »Je mehr Löcher, desto weniger Käse« und »Nullen machen Einsen groß« entführt uns Wissenschaftsjournalist und Mathe-Fan Holger Dambeck erneut in die faszinierende Welt der mathematisch-logischen Knobeleien. Das Spannende an einem gelungenen Rätsel ist, dass es keine offensichtliche Lösung gibt. Umso wichtiger Dambecks Credo: »Es gibt zwar Regeln. Wer aber wirklich Spaß haben will, wird kreativ.« In »Kommen drei Logiker in eine Bar …« präsentiert uns Dambeck, seit 2014 Autor der beliebten Spiegel Online-Kolumne »Rätsel der Woche«, nun seine persönliche Sammlung der 100 schönsten Logik- und Zahlenrätsel: Wie werden der Frauenheld Casanova und die Mathematik zum Dreamteam? Wie viele Partien werden gespielt beim weltgrößten Tischtennisturnier in Ping-Pong-Town? Und was machen eigentlich drei Logiker, wenn sie ein Bier bestellen möchten? Am Ende von jedem Logik- und Zahlenrätsel ist ein direkter Link zur Lösung – aber bitte erst ordentlich selber nachgedacht!

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB

Seitenzahl: 185

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Holger Dambeck

Kommen drei Logiker in eine Bar

Die schönsten Mathe-Rätsel

Mit Illustrationen von Michael Niestedt

Kurzübersicht

> Buch lesen

> Titelseite

> Inhaltsverzeichnis

> Über Holger Dambeck

> Über dieses Buch

> Impressum

> Klimaneutraler Verlag

> Hinweise zur Darstellung dieses E-Books

Inhaltsverzeichnis

VorwortSystematisch kreativ: Wie man Matherätsel angehtNicht aufgeben, dranbleibenAufgabentext genau analysierenSystematisch vorgehenWenn möglich, vereinfachenAnders denkenSocial EngineeringIndirekt statt direktSchubfachprinzipDomino-MethodeAufgabenUhren, Kerzen und Pistolen: RätselklassikerGanz ohne Mathe: Futter für QuerdenkerRaffiniert & clever: Werden Sie kreativSchlümpfe, Lügner, Häftlinge: Logik zähltKacheln & Kreise: Hauptsache linientreuAus Eins mach Vier: Knobeleien mit ZahlenGeschwister, Roulette, Sport: Gut kombiniertFähren, Treppen, Brücken: Bewegung ist allesMünzen, Gläser, Diebe: Die ganz dicken BretterLösungen1) Welche Figur setzt die Reihe fort?2) Schokolade wiegen3) Perfekt ausgerichtete Uhrzeiger4) Ein Gangster überlebt – aber warum?5) Wasser im Wein6) Bloß nichts anbrennen lassen7) Klappt der Lauf durch die Wüste?8) Gelingt Ihnen die Ketten-Aktion?9) Koch langsam 310) Schüchtern trifft extrovertiert11) Wo sind die Äpfel, wo die Orangen?12) Treffen sich zwei Mathematiker13) Vier Wanderer und eine wacklige Brücke14) Steine versenken im See15) Nicht schießen, bitte!16) Retten Sie das arme Küken!17) Ein Toter in der Wüste18) Seltsamer Autofahrer19) Intervall-Schlaf20) Bizarrer Fund21) Hupkonzert am Motel22) Eingebung im Treppenhaus23) Fataler Schuhkauf24) Er läuft und läuft – aber wie weit?25) Welche Zahl fehlt?26) Die Katze mit den magischen Kräften27) Haarige Berliner28) Welcher Schalter ist für welche Lampe?29) Was tun gegen Diebe beim Paketdienst?30) Unschlagbare Springer31) Möge der Langsamste gewinnen – nur wie?32) Die cleveren Logik-Zwerge33) In die Brüche gehen34) Gut abgewogen35) Wer ist der Dieb?36) Lügner unter sich37) Kommen drei Logiker in eine Bar …38) Vier Fußballvereine und eine Umfrage39) Lügner am Tisch40) Ist das gelogen?41) Ein Wanderer, zwei Fragen und drei Gespenster42) Ein Allwissender in Nöten43) Fünf Mützen und drei Gefangene44) Verlogen oder ehrlich?45) Wie retten die Schlümpfe ihr Leben?46) Rettende Logik47) Verflixte Spirale48) Aus einem Quadrat werden zwei49) Lass es kacheln!50) Das Kreuz mit dem Kreis51) Ein Bauer, ein Baum und eine dreieckige Weide52) Bauprojekt mit zwei Pyramiden53) Schließt sich der Kreis?54) Verwinkelter Würfel55) Wie viele Scheiben werden gebraucht?56) Die Kugel passt genau57) Immer schön auf dem Teppich bleiben58) Alter gesucht59) Welche Zahl fehlt?60) Der Taschenrechner spinnt!61) Teilbar durch 45?62) Jonglieren mit Potenzen63) Forty+ten+ten=sixty64) Finden Sie die passende Zahl65) Wenn Ziffern die Plätze tauschen66) Magie mit Zahlen67) Verrückte Rechnerei68) Euro und Cent verwechselt69) Der Rest für die Schwester70) Wie viele Mädchen sind in der Gastfamilie?71) Agententraining72) Das größte Tischtennisturnier der Welt73) Russisches Roulette für Fortgeschrittene74) Wer verlor das zweite Spiel?75) Wer macht das Rennen?76) Verlierer beim Schachturnier77) Streit unter Lottospielern78) Feiert schön!79) Zehn misstrauische Räuber80) Apfelkisten gerecht aufteilen81) Zwei Radfahrer auf der Brücke82) Ist die Fähre noch zu schaffen?83) Wie viele Stufen hat die Rolltreppe?84) Zwei Ruderer und eine Mütze85) Vom Winde verweht86) Rundfahrt garantiert87) Das große Oldtimerbus-Treffen88) Casanova zweifelt am Zufall89) Wettrennen auf der Rolltreppe90) Rund um die Welt91) Die mysteriösen Fähren92) Duell um 50 Münzen93) Chance auf Freiheit erhöhen94) Gläser im Härtetest95) 500 Schließfächer96) Das Benzin wird knapp!97) Ein Tisch, zwei Diebe und ein Berg Münzen98) Nullen und Einsen99) 50 Uhren und ein Tisch100) HandshakesQuellenDank
zurück

Vorwort

Was ist eigentlich Mathematik?

Diese Frage höre ich immer wieder. Ich weiß, dass viele Menschen glauben, Mathematik habe mit Rechnen zu tun. Und vielleicht noch mit Formeln.

Doch in der Mathematik geht es gerade darum, das Rechnen zu vermeiden, wie möglichst auch alles andere, was umständlich und kompliziert ist. Das würde so zwar nicht jeder Mathematiker unterschreiben. Aber zumindest für die Rätsel dieses Buches trifft es auf jeden Fall zu.

Es ist ein Mix aus Aufgaben, die bereits bei SPIEGEL ONLINE als Rätsel der Woche erschienen sind und aus neuen Kopfnüssen, die ich für dieses Buch ausgewählt habe.

 

Rätsel gehören ins Genre der sogenannten Unterhaltungsmathematik. Den Begriff finde ich ehrlich gesagt unpassend, er erinnert mich irgendwie an Unterhaltungsmusik. Und dann habe ich immer gleich schreckliche Schlagermusik im Ohr.

Aber egal: Sich mit Mathematik zu beschäftigen, kann großen Spaß machen, ja, es kann sehr unterhaltsam sein. Unser Gehirn wird auf eine Weise beansprucht, die wir aus dem Alltag kaum kennen. Und ich finde, es geht nichts über das Aha-Erlebnis, wenn uns plötzlich die Lösung einer scheinbar unlösbaren Aufgabe erscheint.

 

Wie gesagt: Mathematik ist unter anderem, wenn man umständliches Rechnen vermeidet. Weil es oft viel kreativere, viel elegantere Wege gibt, eine Aufgabe zu lösen, als das Schema F, das wir in der Schule stupide gelernt haben.

 

Zwei Beispiele sollen das demonstrieren. Das erste kennen Sie wahrscheinlich:

 

Was ist die Summe der Zahlen von 1 bis 10?

 

Es gibt eine sehr schöne, quasi geometrische Lösung: Wir schreiben die zehn Zahlen als Punktmengen. Es gibt zehn Reihen. In der ersten ist ein Punkt, in der zweiten sind zwei und so weiter bis zur zehnten Reihe mit zehn Punkten.

 

Die folgende Skizze zeigt die Punkte – sie hilft uns allerdings zunächst nicht weiter.

Wenn wir aber die gleiche Punktmenge noch einmal um 180 Grad gedreht rechts daneben setzen, haben wir die Aufgabe gelöst.

Die beiden zusammengeschobenen Punktmengen bilden ein Rechteck aus zehn mal elf Punkten – also aus 110 Punkten. Diese Zahl müssen wir nur noch durch zwei teilen, weil die Punktmenge ja zweimal drinsteckt, und schon haben wir die richtige Lösung von 55.

 

Das zweite Beispiel ist nicht ganz so leicht – aber auch dabei besteht der Beweis aus einer einfachen Skizze, die nahezu selbsterklärend ist.

 

Wie groß ist die Summe von 1/4 + 1/16 + 1/64 + 1/256 + ...? Also der Reziproken der Viererpotenzen beginnend bei 1/4?

 

Die Lösung lautet 1/3. Als Beweis dient ein Quadrat, das geviertelt wird. Und bei dem das obere rechte Viertel nochmals geviertelt wird – und zwar immer wieder. Siehe folgende Zeichnung:

Wenn wir die Summe 1/4 + 1/16 + 1/64 +... berechnen wollen, brauchen wir nur die dunkelgrauen Flächen aufzusummieren. Denn sie entsprechen 1/4, 1/16, 1/64 ... der Quadratfläche.

Jetzt kommt der entscheidende Trick: Nehmen wir zu jeder schwarzen Fläche auch die jeweils gleich großen weißen und hellgrauen Fläche hinzu, ist die Summe über all diese Flächen genauso groß wie das gesamte Quadrat. Also gilt:

Das teilen wir durch drei und haben das richtige Ergebnis.

War das zu kompliziert? Ich hoffe nicht.

 

Ich wünsche Ihnen viel Spaß mit den folgenden hundert Aufgaben! Und dass Sie möglichst oft erleben, wie aus dem Nichts eine elegante Lösung auftaucht.

 

Holger Dambeck

Hamburg, den 15.6.2017

zurück

Systematisch kreativ: Wie man Matherätsel angeht

Es ist sicher kein Zufall, dass Sie dieses Buch in den Händen halten. Sie mögen wahrscheinlich Mathematik – und sicher knobeln Sie auch gern. Damit Sie an den Rätseln auf den folgenden Seiten nicht verzweifeln, möchte ich Ihnen vorab ein paar Tipps geben. Leider kann ich Ihnen keine allgemein gültige Lösungsstrategie liefern – die gibt es schlicht nicht. Aber zumindest ein paar Ideen, wie man sich Kopfnüssen nähert.

Wenn Sie mein Buch »Je mehr Löcher, desto weniger Käse« gelesen haben, wird Ihnen der eine oder andere Tipp bekannt vorkommen. Dort gab es ein ganzes Kapitel über das Finden kreativer Lösungen. Ich habe meine Tipps hier kompakter formuliert und noch erweitert.

Nicht aufgeben, dranbleiben

Seien Sie beharrlich! Wenn Sie ein Problem lösen wollen, sollten Sie es erst einmal gründlich durchdenken. Blättern Sie nicht gleich zu den Lösungen, wenn Sie nicht sofort vorankommen. Haben Sie Geduld, lassen Sie das Problem ruhig erst mal sacken. Wenn Sie nicht weiterkommen, probieren Sie einfach erst einmal das nächste Rätsel. Das bringt Sie auf andere Gedanken und kann helfen, das bislang ungelöste Problem zu knacken. Womöglich kommt die zündende Idee auch ganz überraschend – zum Beispiel am nächsten Morgen beim Zähneputzen.

Aufgabentext genau analysieren

Zuallererst müssen Sie natürlich die Aufgabe selbst verstehen. Wenn Ihnen beim Lesen des Textes etwas spanisch vorkommt, sollten Sie aufhorchen. Oft liefern solche Stolpersteine in der Aufgabe nämlich wertvolle Hinweise. Nehmen wir als Beispiel Rätsel Nummer 12 aus diesem Buch:

Zwei russische Mathematiker treffen sich zufällig im Flugzeug. »Du hast drei Söhne, nicht wahr?«, fragt der eine. »Wie alt sind die denn jetzt?«

»Das Produkt der Jahre ist 36«, lautet die Antwort, »und die Summe der Jahre ist genau das heutige Datum.«

»Hm, das reicht mir noch nicht«, meint darauf der Kollege.

»Oh ja, stimmt, ich habe ganz vergessen zu erwähnen, dass mein ältester Sohn einen Hund hat.«

Wie alt sind die drei Söhne?

Finden Sie den Hinweis auf den Hund auch seltsam? Wenn Sie genauer darüber nachdenken, merken Sie, dass anstelle des Hundes auch eine Katze, eine Spielkonsole oder eine Haarfarbe stehen könnte. Trotzdem ist dieser Satz wichtig, aber wegen eines anderen Details. Mehr möchte ich an dieser Stelle noch nicht verraten.

Systematisch vorgehen

Sofern die möglichen Lösungen halbwegs überschaubar sind, kann es sich lohnen, alle denkbaren Kombinationen aufzuschreiben und sich jede einzeln anzuschauen. Das gilt ganz besonders für Logikrätsel. Beispiel: Sie haben die Aussagen von drei Personen und wissen, dass eine davon lügt. Wer könnte der Lügner sein?

 

Person A: »B lügt.«

Person B: »C lügt.«

Person C: »Ich lüge nicht.«

 

Machen Sie eine kleine Tabelle, auch Wahrheitstabelle genannt, in der alle zu unterscheidenden Fälle als eigene Spalte auftauchen:

Fall 1

Fall 2

Fall 3

Person A: »B lügt«

Lüge

wahr

wahr

Person B: »C lügt«

wahr

Lüge

wahr

Person C: »Ich lüge nicht«

wahr

wahr

Lüge

Widerspruch

möglich

Widerspruch

Dann untersuchen Sie für jeden Fall, ob die Aussagen dazu passen. Für den Fall 2 trifft das zu, in den Fällen 1 und 3 jedoch gibt es einen logischen Widerspruch. Zu Fall 1: B behauptet, das C lüge, aber der Lügner soll in diesem Fall ja A sein. Das ist ein Widerspruch. Im Fall 3 behauptet A, dass B lügt – aber der Lügner soll in diesem Fall C sein. Wegen dieser Widersprüche sind die Fälle 1 und 3 nicht möglich und entfallen. Nur Fall 2 ist noch möglich. Weil es dabei keine logischen Widersprüche gibt, kann nur B der Lügner sein.

Wenn möglich, vereinfachen

Oft geht es darum, etwas ganz allgemein zu beweisen – für alle denkbaren Konstellationen oder zumindest für große Anzahlen. Das kann einen überfordern, wenn man sich in das Problem hineindenken möchte. Wenn an einem Tisch zum Beispiel 100 Lügner und 100 Wahrheitsliebende sitzen, die komische Dinge sagen, schauen Sie sich doch erst mal eine stark vereinfachte Version an. Am Tisch sitzen dann eben zunächst nur zwei Lügner und zwei Personen, die stets die Wahrheit sagen. Versuchen Sie, das Problem erst in der simpleren Variante zu lösen. Vielleicht finden Sie dabei auch Wege, das größere Problem zu knacken.

Anders denken

Ausgetretene Pfade verlassen – das ist eine der wichtigsten Methoden, um kreative Ideen zu entwickeln. In der Mathematik fällt das oft schwer, weil wir einfach zu sehr in Lösungstechniken denken, die wir gelernt haben. Das ist wie Reisen mit der Eisenbahn. Wir können so nur die Orte erreichen, zu denen auch Schienen führen.

Oft hilft es schon, den Blickwinkel zu wechseln oder die Problemstellung etwas zu verändern. Vielleicht lässt sich eine Aufgabe mit Zahlen auch geometrisch lösen? Ein paar Beispiele:

Ein Mann startet seine Wanderung um 10 Uhr im Tal, um 14 Uhr kommt er an der Berghütte an. Dort übernachtet er und startet am nächsten Morgen um 10 Uhr die Wanderung zurück ins Tal. Weil es bergab geht, ist er eine ganze Weile vor 14 Uhr wieder zurück. Beweisen Sie, dass es mindestens eine Uhrzeit zwischen 10 und 14 Uhr gibt, zu der sich der Wanderer an beiden Tagen in exakt derselben Höhe befunden hat!

Wir wissen nichts über den Höhenverlauf der Wanderung und auch nichts über die Wandergeschwindigkeit. Trotzdem ist die Lösung ganz einfach, wenn wir die Aufgabe etwas verändern:

Zwei Männer starten um 10 Uhr eine höchstens vierstündige Wanderung. Der eine steigt aus dem Tal kommend auf den Berg, der andere ist in der entgegengesetzten Richtung unterwegs. Beweisen Sie, dass es mindestens eine Uhrzeit zwischen 10 und 14 Uhr gibt, zu der sich die Wanderer in exakt derselben Höhe befinden!

Nun, die Lösung ist einfach: Es ist der Moment, in dem sich die beiden Wanderer auf dem Wanderweg begegnen.

 

Noch eine andere Aufgabe:

Wie groß ist die Summe 1+2+3+4+…+97+98+99+100?

Man könnte das natürlich im Kopf oder mit einem Taschenrechner ausrechnen. Aber schon der junge Carl Friedrich Gauß wusste einen besseren Weg. Er sortierte die Zahlen um:

Wie groß ist die Summe 1+100+2+99+ …+50+51?

Das Ergebnis können wir direkt hinschreiben – es lautet 50×101=5.050.

 

Im letzten Beispiel für kreative Lösungswege geht es um einen Kalender, bei dem ein ganz besonderer Trick gefragt ist:

Ein Mann hat zwei Holzwürfel, mit denen er den Tag eines Monats von 01 bis 31 darstellen kann. Welche Ziffern stehen auf den Seiten der beiden Würfel?

Die Analyse des Problems ist relativ leicht: Auf jeden Würfel passen nur sechs Ziffern, also muss man die Ziffern von 0 bis 9 über beide Würfel verteilen. Fragt sich bloß wie? Die Tage eines Monats beginnen mit 01 und gehen bis 31. Es gibt also auf jeden Fall eine 11 und eine 22 – also müssen die 1 und die 2 auf beiden Würfeln vorkommen.

Wir brauchen jedoch auch auf beiden Würfeln die 0, um alle Tage von 01 bis 09 darstellen zu können. Denn es gibt neun Ziffern von 1 bis 9, und auf einen Würfel passen nur sechs verschiedene.

0, 1, 2 – damit sind auf den zwei Würfeln schon drei Seiten belegt. Sechs der insgesamt zwölf Seiten sind noch frei – dummerweise sind aber noch sieben Ziffern übrig –, nämlich 3, 4, 5, 6, 7, 8, 9.

Wenn wir zum Beispiel den ersten Würfel mit 0, 1, 2, 3, 4, 5 und den zweiten mit 0, 1, 2, 6, 7, 8 beschriften, ist die 9 nicht untergebracht.

Was nun? Existiert womöglich gar keine Lösung? Doch, es gibt eine, und wir haben sie sogar schon gefunden. Denn wenn wir eine 9 brauchen, stellen wir die 6 einfach auf den Kopf – und damit ist das Rätsel des Würfelkalenders gelöst.

Social Engineering

Manchmal sitze ich an einer Knobelaufgabe, von der ich fürchte, dass sie womöglich unüberschaubar viele Lösungen haben könnte. Nehmen wir folgendes Beispiel:

Finden Sie alle zehnstelligen Primzahlen, die jede der zehn Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 enthält. (Eine Primzahl ist nur durch 1 und sich selbst teilbar.)

Wenn Sie sich ein wenig mit Kombinatorik auskennen, wissen Sie, dass aus den zehn Ziffern mehr als 3 Millionen verschiedene Zahlen gebildet werden können. Wie soll man bei jeder davon prüfen, ob sie eine Primzahl ist? Wer denkt sich eine so schwierige Aufgabe aus?

Viel wahrscheinlicher ist, dass es nur eine einzige oder gar keine Lösung gibt. In unserem Fall trifft Letzteres zu: Die Quersumme aller aus den zehn Ziffern gebildeten Zahlen ist immer gleich, nämlich 45(=1+2+3+4+5+6+7+8+9). Und 45 ist sowohl durch 3 als auch durch 9 teilbar. Damit haben wir bewiesen, dass alle diese Zahlen selbst durch 3 und 9 teilbar sind – und dass sie deshalb keine Primzahlen sein können.

Indirekt statt direkt

Eben ging es um theoretisch mehr als drei Millionen verschiedene Zahlen. Wir gehen noch einen Schritt weiter bis zu unendlich vielen.

Beweisen Sie, dass es unendlich viele Primzahlen gibt!

Wir könnten versuchen, alle Primzahlen durchzunummerieren. Dabei würden wir feststellen, dass das Ganze einfach kein Ende nimmt. So kriegt man den Beweis auf keinen Fall hin.

Statt das Problem direkt zu lösen, gehen wir indirekt vor – quasi hintenherum. Einbrecher machen es im Grunde genauso: Sie knacken nicht etwa das dicke Schloss an der Hauseingangstür. Nein, sie gehen zur Rückseite des Hauses und finden dort ein leicht zu öffnendes Kellerfenster.

Bei einem indirekten Beweis beweisen wir eine Aussage nicht direkt – wir widerlegen stattdessen ihr Gegenteil. Dass indirekte Beweise überhaupt möglich sind, liegt an der logischen Konsistenz der Mathematik. Eine Aussage ist entweder richtig oder falsch. Und zwei sich widersprechende Aussagen können nicht zugleich wahr sein.

Wir nehmen also an, dass es nur endlich viele Primzahlen gibt – und zwar n. Diese Primzahlen nennen wir p1, p2, p3 … pn. Nun bilden wir das Produkt:

p1×p2×p3×…×pn

Das ist eine natürliche Zahl mit einer interessanten Eigenschaft: Sie ist durch jede der n Primzahlen p1, p2, p3 … pnteilbar. Denn die Zahl ist ja das Produkt all dieser Primzahlen.

Jetzt kommt der eigentliche Trick. Wir addieren zu dem Produkt der n Primzahlen noch die Zahl 1 hinzu:

p1×p2×p3×…×pn+1

Diese Zahl ist ebenfalls eine natürliche Zahl. Allerdings ist sie durch keine der n Primzahlen teilbar, sie lässt bei der Division vielmehr immer den Rest 1. Deshalb muss diese Zahl selbst eine Primzahl sein, die nicht in p1, p2, p3 … pn enthalten ist – oder sie ist das Produkt zweier oder mehrerer Primzahlen, die nicht zu den n vorgegebenen Primzahlen gehören.

Das widerspricht jedoch unserer Annahme, dass nur n Primzahlen existieren. Also ist die Annahme, dass es endlich viele Primzahlen gibt, falsch – was wiederum bedeutet, dass es unendlich viele davon gibt. Damit ist der Satz bewiesen.

Zugegeben: Indirekte Beweise lesen sich komisch, man muss auch höllisch aufpassen, was das Gegenteil einer Aussage ist. Aber die Methode ist sehr hilfreich.

Schubfachprinzip

Sie kennen das: Den ganzen Tag müssen wir Dinge ordnen und sortieren. Schubfächer haben sich dabei als hilfreich erwiesen – in virtueller Form auch in der Mathematik! Wie das Schubfachprinzip funktioniert, zeigt die folgende kleine Aufgabe:

Im Keller des Sportvereins stehen Skistöcke in den Farben Weiß, Rot, Blau und Grün. Sie sind alle gleich lang. Der Zeugwart will ein Paar Stöcke holen. Doch leider ist das Licht im Keller ausgefallen und er sieht überhaupt nichts. Wie viele zufällig gegriffene Stöcke muss er mit nach oben bringen, damit auf jeden Fall zwei gleicher Farbe darunter sind?

Wir haben vier Schubfächer, jedes hat eine andere Farbe. Wenn wir blindlings Stöcke greifen und dann bei Licht in die Schubfächer sortieren, sind wir beim fünften Skistock mit Sicherheit am Ziel. Denn der fünfte Stock gehört zwingend in ein Fach, in dem bereits ein Stock liegt.

Domino-Methode

Wenn es um Aussagen geht, die für alle natürlichen Zahlen n zutreffen, kann die sogenannte vollständige Induktion das Mittel der Wahl sein. Ich nenne sie allerdings lieber Domino-Methode, denn dann versteht man sofort, wie ein solcher Beweis funktioniert.

Was sind die Voraussetzungen dafür, dass alle auf einem Tisch aufgestellten Dominosteine umfallen? Es sind genau zwei:

Der erste Stein muss fallen.

Jeder Stein steht so, dass er beim Kippen seinen Nachfolger zu Fall bringt.

Als Beispiel für die Domino-Methode nehmen wir die Summenformel für ungerade natürliche Zahlen. Schauen Sie sich bitte einmal folgende Gleichungen an:

1=1=12

1+3=4=22

1+3+5=9=32

1+3+5+7=16=42

1+3+5+7+9=25=52

Offenbar addieren sich ungerade Zahlen, wenn man mit der 1 beginnt, immer zu einer Quadratzahl. Ungerade Zahlen können wir in der Form 2n+1 oder 2n–1 schreiben, wobei n eine natürliche Zahl ist. Wenn wir auf der rechten Seite der Gleichung n2 notieren, dann muss die größte ungerade Zahl links 2n–1 sein. Allgemein geschrieben lautet unsere Vermutung daher:

1+3+…+2n–1=n2

Nun zum Domino-Beweis: Für n=1, 2, 3, 4, 5 gilt die Formel auf jeden Fall. Das bedeutet, dass nicht nur der erste, sondern sogar die ersten fünf Dominosteine auf jeden Fall umkippen. Der Anfang ist also gemacht.

Jetzt greifen wir uns einen beliebigen Dominostein heraus, den Stein Nummer i. Dabei ist i eine natürliche Zahl. Wir nehmen an, dass dieser Stein umkippt. Und Umkippen bedeutet hier, dass die Summenformel für ihn zutrifft.

Summe(i)=1+3+5+…+2i–1=i2

Was aber ist mit dem nächsten Stein mit der Nummer i+1? Trifft die Summenformel für ihn auch zu? Das können wir relativ leicht ausrechnen. Um die Summenformel für i+1 zu erhalten, muss ich zu der Summenformel von i nur die nächste, fehlende ungerade Zahl addieren. Und diese lautet 2(i+1)–1.

Summe(i+1)=Summe(i)+2(i+1)–1

=Summe(i)+2i+1

=i2+2i+1

Der Ausdruck auf der rechten Seite dürfte Ihnen bekannt vorkommen. Es ist eine binomische Formel von der Form

(a+b)2=a2+2ab+b2

Wobei a=i und b=1 ist. Also erhalten wir:

Summe (i+1)=(i+1)2

Damit haben wir gezeigt, dass die Summenformel auch für n=i+1 gilt, sofern wir voraussetzen, dass sie für n=i zutrifft. Das bedeutet, dass unsere Summenformel für alle beliebigen natürlichen Zahlen n gültig ist.

zurück

Aufgaben

Uhren, Kerzen und Pistolen: Rätselklassiker

Zum Einstieg gibt’s eine Sammlung altbewährter Klassiker. Die Aufgaben sind vielseitig und nicht allzu schwer. Mit der Übung kommt der Spaß – und die Lust auf noch viel mehr Rätsel in den folgenden Kapiteln. Legen Sie los!

1)Welche Figur setzt die Reihe fort?

Sie kennen diese Rätselform ganz sicher: Vier bizarr anmutende Bildchen stehen nebeneinander, gern bestehend aus Kreuzen, Kreisen und farbig eingefärbt. Und Sie sollen aus vier, fünf anderen Zeichnungen jene auswählen, die, mit welcher Logik auch immer, als fünfte genau in die Reihe der anderen vier passt.