89,99 €
A practical guide to LTE design, test and measurement, this new edition has been updated to include the latest developments
This book presents the latest details on LTE from a practical and technical perspective. Written by Agilent’s measurement experts, it offers a valuable insight into LTE technology and its design and test challenges. Chapters cover the upper layer signaling and system architecture evolution (SAE). Basic concepts such as MIMO and SC-FDMA, the new uplink modulation scheme, are introduced and explained, and the authors look into the challenges of verifying the designs of the receivers, transmitters and protocols of LTE systems. The latest information on RF and signaling conformance testing is delivered by authors participating in the LTE 3GPP standards committees.
This second edition has been considerably revised to reflect the most recent developments of the technologies and standards. Particularly important updates include an increased focus on LTE-Advanced as well as the latest testing specifications.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1056
Veröffentlichungsjahr: 2013
Contents
Cover
Half Title page
Title page
Copyright page
Foreword to the Second Edition
Preface
Acknowledgements
Author Biographies
Chapter 1: LTE Introduction
1.1 Introduction
1.2 LTE System Overview
1.3 The Evolution from UMTS to LTE
1.4 LTE/SAE Requirements
1.5 LTE/SAE Timeline
1.6 Introduction to the 3GPP LTE/SAE Specification Documents
1.7 References
Chapter 2: Air Interface Concepts
2.1 Radio Frequency Aspects
2.2 Orthogonal Frequency Division Multiplexing
2.3 Single-Carrier Frequency Division Multiple Access
2.4 Multi-Antenna Operation and MIMO
2.5 References
Chapter 3: Physical Layer
3.1 Introduction to the Physical Layer
3.2 Physical Channels and Modulation
3.3 Multiplexing and Channel Coding
3.4 Introduction to Physical Layer Signaling
3.5 Physical Layer Procedures
3.6 Physical Layer Measurements and Radio Resource Management
3.7 Summary
3.8 References
Chapter 4: Upper Layer Signaling
4.1 Access Stratum
4.2 Non-Access Stratum
4.3 References
Chapter 5: System Architecture Evolution
5.1 Requirements for an Evolved Architecture
5.2 Overview of the Evolved Packet System
5.3 Quality of Service in EPS
5.4 Security in the Network
5.5 Services
5.6 References
Chapter 6: Design and Verification Challenges
6.1 Introduction
6.2 Simulation and Early R&D Hardware Testing
6.3 Testing RFICs With DigRF Interconnects
6.4 Transmitter Design and Measurement Challenges
6.5 Receiver Design and Measurement Challenges
6.6 Receiver Performance Testing
6.7 Testing Open- and Closed-Loop Behaviors of the Physical Layer
6.8 Design and Verification Challenges of MIMO
6.9 Beamforming
6.10 SISO and MIMO Over-the-Air Testing
6.11 Signaling Protocol Development and Testing
6.12 UE Functional Testing
6.13 Battery Drain Testing
6.14 Drive Testing
6.15 UE Manufacturing Test
6.16 References
Chapter 7: Conformance and Acceptance Testing
7.1 Introduction to Conformance Testing
7.2 RF Conformance Testing
7.3 UE Signaling Conformance Testing
7.4 UE Certification Process (GCF and PTCRB)
7.5 Operator Acceptance Testing
7.6 References
Chapter 8: Looking Towards 4G: LTE-Advanced
8.1 Summary of Release 8
8.2 Release 9
8.3 Release 10 and LTE-Advanced
8.4 Release 11
8.5 Release 12
8.6 References
List of Acronyms
Index
LTE and the Evolution to 4G Wireless
This edition first published 2013© 2013 Agilent Technologies, Inc. Published by John Wiley & Sons, Ltd.
Registered officeJohn Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.
The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.
Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.
This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. Agilent Technologies, Inc. does not warrant that the same results will be obtained in every test performed and makes no warranty of any kind, expressed or implied, with regard to the documentation contained in this book. Agilent Technologies, Inc. shall not be liable in any event for incidental or consequential damages in connection with, or arising out of the use of the procedures outlined in this book. All products or services mentioned in this book are the trademarks or service marks of their respective companies or organizations. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
LTE is a trademark of ETSI.“WiMAX” and “Mobile WiMAX” are trademarks of the WiMAX Forum.cdma2000 is a registered certification mark of the Telecommunications Industry Association. Used under license.Bluetooth is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed to Agilent Technologies, Inc.Microsoft Excel and Visual Basic are regsitered trademarks of Microsoft Corporation in the United States and other countries.MIPI is a licensed trademark of MIPI, Inc. in the U.S. and other jurisdictions.PCI-SIG and PCI EXPRESS are registered trademarks of PCI-SIG.
Library of Congress Cataloging-in-Publication Data
LTE and the evolution to 4G wireless: design and measurement challenges/[edited by] Moray Rumney.—Second edition.pages cmIncludes bibliographical references and index.ISBN: 978-1-119-96257-1 (cloth: alk. paper) 1. Wireless communication systems. 2. Wireless Internet. I. Rumney, Moray, editor of compilation. II. Long term evolution and the evolution to 4G wireless.TK5103.2.L798 2013621.382—dc23
2013000332
A catalogue record for this book is available from the British Library.
Publisher: John Wiley & Sons LimitedEditor-in-Chief: Moray RumneyManaging Editor : Mary Jane PahlsProgram Manager: Jan Whitacre
Foreword to the Second Edition
Since the first edition of this book a number of LTE networks have become operational and customer take-up has been enthusiastic. What is remarkable is that LTE is being launched not on a single band but now on over 16 bands worldwide—and yet my impression is that there has been much less fuss over the launches than was experienced at the introduction of UMTS networks around 2003. At times of launch, bad news tends to hang around longer than good news, so no fuss is generally preferred. And if I am right about the relatively smooth launch of LTE, it is perhaps because the technology represents evolution and not revolution. Maybe operators have learned from the 3G experience to manage their customers’ expectations more effectively. Another factor, quite possibly, is that the industry-wide effort to deliver conformance tests for both infrastructure and devices—available almost as soon as the core specifications matured—has paid dividends.
As the chairman of 3GPP RAN Working Group 5, I have been privileged to witness tremendous goodwill and cooperation by the test industry in particular to make conformance testing based on network emulators a reality even before the first LTE network was launched. With the availability of operational handsets thereafter, test development work continues apace. And yet the delivery of conformance tests has not been the only test story. In mid-2010, network operators demanded the ability to measure application layer throughput and other performance factors. Consequently, RAN WG5 strayed from its traditional charter of providing conformance tests for performance requirements defined in the core specifications to deliver a technical report that provides the methodology for user-centric tests that go well beyond the scope of the original performance requirements. This report is already in use by the GCF’s Performance Agreement Group that was formed in early 2011; other similar market-driven requests for new types of testing are expected to follow.
These events seem to indicate that reliance on traditional “bit exact” conformance tests is no longer sufficient to ensure that devices will deliver the necessary end-user experience in a real network. A new, end-user driven approach to testing has required thinking beyond the status quo; indeed, it has led to much closer cooperation between industry partners than ever before. This partnership approach is likely to be in further demand as LTE networks and services continue to grow and become more complex.
I believe that the successful early launches of LTE networks are the result of learning from the UMTS experience. The process of test case selection and development has been optimized, but with the continued evolution of LTE through Releases 11 and 12 many technical challenges remain. Features such as carrier aggregation, uplink MIMO, and “over-the-air” MIMO testing, which are covered in the second edition of this book, are not so far away. Keeping up will be as challenging as ever.
Phil BrownChairman, TSG T WG1 2003–2005 and TSG RAN WG5 2005-presentDecember 2012
The introduction of any new access technology into the current mobile telecommunication network is going to be filled with challenges, and not all of them can be anticipated. For network operators, convincing tech-savvy customers that new is better will need more than a marketing effort; it will need demonstrable results. The one thing that connects a customer to the network operator is the mobile device or handset. If that device does not appear to work in a variety of situations, then inevitably good reputations will be lost, customers may leave, and ultimately revenue and profits will suffer. No matter how big the investment in the new technology, mastering the physics of the mobile device and its supporting network is the foundation of success.
Expectations are high for Long Term Evolution, or LTE as it commonly called. But these expectations are based on the premise of fault-free performance. Therefore, LTE’s initial success will be determined by the ability of handset and radio infrastructure manufacturers to deliver products that conform to 3GPP standards and are robust enough to allow operators to introduce improved services without disruption. Product testing is essential, but it can also be expensive and time-consuming. Manufacturers of new LTE products will have to make difficult decisions regarding what elements require rigorous procedures such as conformance testing and what can be safely left to testing in the field. The bottom line is that compromised quality or outright failure is unacceptable, costing more in the long run if it affects thousands or even millions of users.
Whatever the strategy a manufacturer adopts, the telecommunications test industry will once again play the important (but often unenviable) role of providing the equipment necessary to protect the huge investments made by LTE equipment manufacturers so that they, in turn, can fulfill the demands of the operators. The reality is that operators, manufacturers and the test industry need to work together closely as they try to establish competitive advantage. The scale of investment required to introduce LTE is likely to be the factor that brings about its success, as all players realize the common goal of making the new technology work. In this respect I have seen cooperation between competitors at all levels, whether it is in a 3GPP Standards meeting room with the sharing of work or consensus building, or even at the commercial level where compromises often have to be made to adapt to shifting moods in the market place.
Standards for new technology are essential, but proving adherence to those standards is a serious and expensive task. One approach to managing risk during LTE introduction can be found in the work of the Global Certification Forum (GCF). In March 2008, GCF initiated a process to define the criteria against which the first LTE devices can be certified; this will ensure GCF is well placed to assume market requirements prior to full scale development of conformance test cases. Here is an example of cross-industry commitment and cooperation. To start with, much consensus building was required between operators and manufacturers to select and prioritize the conformance tests being developed by 3GPP TSG RAN WG5. With that selection came the increased confidence needed to invest resources into developing the most relevant test specifications and test platforms in a timely manner. The GCF processes, along with the benefits to be gained by the industry, are explained in this book.
Leading test companies such as Agilent understand the technical challenges ahead. This working knowledge, coupled with an appreciation of market requirements such as device certification and a sensitivity to the needs of their manufacturer customers, qualifies Agilent to weigh in on the complexities and test challenges of LTE. Although no one person or one company can fully comprehend all aspects of LTE, this book sets out to give practical information to practicing engineers who are or will be working with LTE technology. In so doing, the authors are helping prepare the way for successful LTE deployment.
Phil BrownChair of 3GPP TSG RAN WG5; Chair of the Global Certification Forum Steering Group 2008April 2009
Preface
The next generation of cellular technology is dramatically altering the communications landscape, changing the way people access information and interact with one another. At the forefront of the new technology is LTE, the long-term evolution of UMTS, developed by the Third Generation Partnership Project (3GPP). LTE is offering consumers a new level of mobile broadband access while ensuring that network operators achieve greater operational efficiencies and reduced cost of service. The further evolution of LTE through the LTE-Advanced project is now an approved part of the ITU-R IMT-Advanced (4G) program.
Turning LTE and LTE-Advanced into reality takes thousands of hours of engineering development. This book is intended to help make the task easier. The engineers at Agilent have contributed their insights to provide readers with an understanding of LTE that comes from working with the technology on a daily basis, both in the lab and on the committees that are defining the LTE standards. As Agilent engineers, they also have a unique measurement perspective to offer. The authors have shared the best, most current information to help ensure the success of LTE and future generations of cellular technology. The book is not intended, however, to substitute for reading the standards.
In this second edition, the authors have updated the content to the latest standards and included new material on LTE-Advanced where relevant; notably in the discussions of the air interface and physical layer. In addition much has been added on design, verification, and manufacturing test to help engineers meet their design and development goals and schedules.
Chapter 1 introduces LTE with an overview of the technology’s objectives, services, and architecture. This chapter covers the standards process and status of the LTE/SAE Trial Initiative (LSTI).
Chapter 2 discusses air interface concepts, including the OFDMA modulation scheme used for the downlink, the SC-FDMA uplink modulation scheme, and multiple antenna techniques such as MIMO.
Chapter 3 gives more detail about the physical layer design. The chapter describes the downlink and uplink frame structures and defines the physical signals and channels. Multiplexing, channel coding, and physical layer measurements are covered. The procedures for the physical layer and radio access are explained along with radio resource management.
Chapter 4 covers upper layer signaling including the specifications for access stratum signaling and non-access stratum protocol states and transitions.
Chapter 5 introduces the System Architecture Evolution (SAE), which is the evolution of the core network to an all-IP system. The SAE is being developed concurrently with the LTE air interface.
Chapter 6 turns to the challenges of system design and testing. The chapter begins by exploring how to use LTE simulation tools to design a system and translate simulations into real signals for testing. This leads to a discussion of testing the new DigRF standard that provides a digital interface between the baseband and RF integrated circuits. Considerable time is spent discussing likely design issues and the challenges of testing LTE receivers and transmitters at the physical and transport channel layers. MIMO test challenges are also addressed in detail including beamforming and UE over-the-air testing. Other sections cover signaling protocol development and test, UE functional test, battery drain test, drive test, and manufacturing test of UEs.
Chapter 7 covers RF and signaling conformance testing and the role of the Global Certification Forum (GCF) and PCS Type Certification Review Board (PTCRB). The role of network operator acceptance testing is also discussed.
Chapter 8 concludes with a summary of the main features in Releases 9 through 12 including more detail on Release 10 LTE-Advanced.
Acknowledgements
The management team of Agilent’s Global LTE Initiative would like to recognize the valuable insights and hard work of the many contributors to this book.
Moray Rumney has done an outstanding job of defining the book’s focus and the content. He spent many hours writing, working with other authors, and editing to give the book’s technical content its final shape.
Our special thanks go to Mary Jane Pahls for without her expertise and dedication to the first and second editions, they would never have happened. Mary Jane has a talent to turn very technical material including the graphics into meaningful and accessible content to provide a consistent end result across a wide range of authors.
Many experts provided valuable input and comments on the content. In addition to the chapter authors listed later, we would like to recognize Russell Barbour, Mike Hurst, Yuqin Shen, Dan Aubertin, Bob Cutler, Phil Lorch, Jing Ya, Hongwei Kong, Dan Jaeger, and Juergen Placht for their contributions. We thank Agilent and our managers for providing their support and encouragement in the second book’s creation.
Dr. Michael Leung’s enthusiasm was instrumental in getting the first edition done.
The 3GPP standardization process involves people from all over the world. We wish to acknowledge the work of our colleagues in creating the LTE standards documents. Without these documents, this book would not be possible.
Finally, we are grateful for our families who, once again, provided understanding and support during our long hours to complete this work.
Jan WhitacreLTE Program Lead and Project DirectorAgilent Technologies
February 2013
Author Biographies
Ying Bai
Before joining Agilent Technologies, Ying Bai received his Masters in Communication and Information Systems from the Institute of Electronics, Chinese Academy of Sciences, in 2006. Starting at Agilent as an application support engineer for the Signal Sources Division, Bai Ying was initially responsible for offering in-depth technical support to application engineers and customers worldwide, including GSM, W-CDMA, cdma2000® and TD-SCDMA products. In 2008, as an application expert, Bai Ying took on the responsibility of planning the LTE TDD version of Agilent’s signal source and signal analysis solutions. He now has product planning, product marketing, and technical support roles for TD-SCDMA and LTE TDD applications.
Randy Becker
Randy Becker obtained his BSE with a major in Electrical Engineering from Walla Walla College in 1997 and an MSEE from the University in Nebraska in 1999. He then joined Hewlett-Packard/Agilent Technologies where he has worked for 14 years in a variety of technical marketing roles. Randy started as a marketing engineer in the Spectrum Analysis Division; two years later he moved to the Signal Sources Division where he stayed for twelve years. Randy is currently a senior application engineer supporting various cellular technologies with a focus in W-CDMA and LTE.
Ed Brorein
Ed Brorein received his BSEE from Villanova University in 1979 and an MSEE from the New Jersey Institute of Technology in 1987. Ed joined Agilent Technologies (at the time Hewlett-Packard) in 1979 and worked as an R&D engineer, manufacturing engineer, and marketing engineer in many various roles, presently as a marketing application engineer. All along Ed has been actively and deeply involved with the design, engineering, and application of DC power products and components. One area of focus for Ed has been extensively working with mobile device developers, helping with the testing of battery life and power management systems.
Peter Cain
Peter Cain is a wireless solution planner working for Agilent’s Technical Leadership Organization in Edinburgh, Scotland. Since joining Hewlett-Packard/Agilent Technologies in 1985, Peter has had a variety of roles as an RF engineer, project manager, and marketing specialist. Over the last decade he has directed solution plans and written application notes for
Bluetooth
®, wireless LAN, ultra wideband, and Mobile WiMAX™. Most recently he has applied his knowledge of MIMO to LTE and helped deliver 89600 Wireless Link Analysis. Peter obtained a first class degree in Electronic Engineering at Southampton University in 1981.
Steve Charlton
Steve Charlton contributed to the 1st edition as an employee of Anite Telecoms Ltd. and member of the Anite LTE Layer 2 development team. An engineer for more than 30 years, Steve has been primarily involved in real-time embedded systems, mostly in the telecoms arena.
Niranjan Das
Niranjan Kumar Das contributed to the 1st edition as an employee of Anite Telecoms Ltd. with primary responsibility for the development of the MME protocols for Anite’s test system. Since graduating in 1999 with a BE in Computer Science from Dibrugarh University, India, Niranjan has been mainly involved with 3GPP Layer 3 protocol development in UMTS and LTE.
Allison Douglas
Allison Douglas is a product manager in the Microwave and Communications Division at Agilent Technologies in Santa Rosa, CA. Allison joined Agilent Technologies in 2004 as an R&D engineer and since then has been in several different roles, including application engineer supporting cellular technologies and product marketing engineer. She is currently a product manager for the X-Series signal generators. She holds a BSE in Electrical Engineering and Biomedical Engineering from Duke University and an MBA from Gonzaga University.
Jeff Dralla
Jeff Dralla is a product planner and program manager in Agilent’s Mobile Broadband Organization focusing on cellular and wireless connectivity manufacturing test solutions. Jeff joined Agilent Technologies in 2004 while completing a B.S. and M.S. in Electrical Engineering from the University of Southern California’s Viterbi School of Engineering. Since then Jeff has held various roles within Agilent spanning sales to applications engineering, product planning and marketing, and most recently strategic program management. Jeff’s main focus currently is planning next generation test equipment for wireless manufacturing as well as managing Agilent’s strategic partnerships with leading wireless chipset companies.
Sandy Fraser
Sandy Fraser is a 25-year veteran of the RF and microwave industry with expertise spanning DC to 100 GHz applied to such diverse technologies as space and military products and infrared. Sandy’s career includes over 20 years’ experience with a cellular radio focus. During the last twelve years with Agilent Technologies, Sandy has focused on base station emulators for manufacturing test instruments, including the 8922 and the E5515B/C. Today he is the product manager for the E6621A PXT instrument and a leader in LTE technology awareness and training, specializing in LTE protocol and signaling. Sandy is a well-published author and his papers and presentations are appreciated by a global audience. He holds a BSc in Mechanical Engineering from Glasgow University.
Peter Goldsack
Peter Goldsack is an R&D engineer at Agilent Technologies. He has a BS in Mathematics from Edinburgh University, Scotland, and an MS in Electronics from Napier University, also in Edinburgh. Peter has worked at Hewlett-Packard/Agilent Technologies for the past 17 years in a variety of roles within R&D and marketing. He has developed protocol stacks for GSM, GPRS, EGPRS, and LTE and worked in a technical marketing role on GSM, GPRS, EGPRS, W-CDMA, HSDPA, HSUPA, and WiMAX™. Currently his primary responsibility is developing LTE solutions for cellular R&D customers.
Jean-Philippe Gregoire
Jean-Philippe Gregoire received a Masters in Electrical Engineering (microelectronics) from the Université de Liège, Belgium, in 2001. He joined Agilent Technologies the same year. Since then Jean-Philippe has contributed significantly to various projects—from specification to implementation—focusing on baseband digital with a specific interest in MIMO. As member of Agilent Labs, he has lead a research program on closed-loop MIMO and multi-channel fading in a European collaborative framework. Jean-Philippe is the author of several patent applications and technical papers in the field of signal processing, MIMO, and OFDM systems.
Craig Grimley
Craig Grimley joined Hewlett-Packard/Agilent Technologies in 1993 after completing a BEng (Hons) in Electrical and Electronic Engineering from Edinburgh’s Heriot-Watt University. Craig initially spent a few years in manufacturing engineering before moving to his current product development research and design role in Agilent’s Signal Analysis Division. Over the years Craig has gained measurement experience in many wireless communication signal formats including GSM, EDGE, W-CDMA, DVB-T/C,
Bluetooth
, WLAN, cdma2000, and 1xEVDO, as well as other general-purpose measurement applications including AM/FM and noise figure. His current technology focus is the development of signal analysis measurement capabilities for LTE within the Agilent 89600 VSA product.
Pankaj Gupta
Pankaj Gupta obtained his Bachelor of Technology in Electronics and Communications from Cochin University, India, in 2000. He has worked with SASKEN/Anite for more than eight years. During this time Pankaj has been involved with design and development of 3G conformance test cases. He started attending the 3GPP testing standardization group RAN5 (formerly known as T1) in 2004. Since then he has contributed to the development of R99, HSDPA, HSUPA and LTE conformance signaling test cases. In addition to working on the standards, Pankaj is the test case lead manager within Anite’s Conformance Business Unit and is responsible for the Anite Conformance Test product for 3G and LTE test cases.
Ken Horne
Ken Horne is a product planner with the Mobile Broadband Operation at Agilent. Ken Horne graduated in 1985 with an M.Eng in Electronics and Electrical Engineering from Heriot-Watt University, Edinburgh. A member of IET and a Chartered Engineer, Ken has worked in a variety of roles through R&D and marketing in RF engineering and test equipment, joining Hewlett Packard in 1994, where he has had responsibility for many cellular and wireless connectivity test products.
Bob Irvine
Bob Irvine is a senior product manager with JDSU. He graduated from the University of Glasgow in 1991 with a Masters degree in Electronic Engineering. After spending 19 years with Hewlett-Packard/Agilent Technologies he transferred to JDSU in 2010. During his early career, Bob worked on the launch and support of test equipment for mobile cellular R&D and manufacturing. For the last 15 years he has been working on leading-edge RF test products for the deployment and optimization of wireless cellular networks including GSM, GPRS, UMTS, HSPA, and LTE.
Moto Itagaki
Moto Itagaki brings more than 15 years of wireless technology experience to his role as senior application product planner for cellular and wireless signal analysis solutions at Agilent Technologies. Moto joined Agilent as a firmware research and development engineer for mobile communication test sets. As a product planner over the last decade, Moto has led and influenced signal analysis test application product requirements and designs for GSM, UMTS, IS95/cdma2000/1xEV-DO, 802.16-OFDMA, LTE, and multi-standard radio. Based in the Kobe office, Moto holds an MS in Electrical and Communication Engineering from Tohoku University in Japan.
Naoya Izuchi
Naoya Izuchi is a product marketing engineer for Microwave and Communications Division of Agilent Technologies. He received a BS in Electronic Engineering from Tottori University in Japan and joined Hewlett-Packard/Agilent as a marketing engineer in 1990. Naoya has worked on various RF and microwave test products including the impedance analyzer and network analyzers with Agilent’s Component Test Division. After spending 3 years as a product line manager in Agilent’s European Marketing Organization, he moved to the Signal Analysis Division and worked as a sales development engineer involved in 3G and 3.5G application support. He is now responsible for the product planning of the LTE and LTE-Advanced Signal Studio software.
Greg Jue
Greg Jue is an application development engineer and scientist working on aerospace/defense applications as a marketing program lead. Greg has worked in Agilent’s High Performance Scopes team as well as Agilent EEsof, specializing in WLAN 802.11ac, LTE, WiMAX, aerospace/defense, and SDR applications. He has authored numerous articles, presentations, and application notes, including Agilent’s LTE algorithm reference white paper and cognitive radio white paper. Greg pioneered combining design simulation and test solutions at Agilent Technologies, and authored the popular application notes 1394 and 1471 on combining simulation and test. Before joining Agilent in 1995, he worked on system design for the Deep Space Network at the Jet Propulsion Laboratory, Caltech University.
Per Kangru
Per Kangru was the world wide Business Development Manager for Agilent’s Networks Solutions Division in the areas of LTE and SAE before joining JDSU in 2010. Per joined Agilent in 2001 working mainly in the area of mobile protocol testing but with MPLS and IP routing conformance testing as well. Over the years at Agilent Per contributed to more than 20 patent applications and he is the sole inventor of several pending patents. Per was Agilent’s lead representative in the LTE & SAE Trial Initiative (LSTI) and has been an invited speaker at several industry conferences. Per has a background in basic research in atomic and laser physics from Uppsala University in Sweden.
Eng Wei Koo
Eng Wei Koo has extensive experience in 3GPP and cdma2000 wireless system technologies both as a cdma2000 BTS developer at Motorola and as a lead engineer at Agilent Technologies for protocol test and monitoring solutions. Eng Wei joined Agilent in 2002 and worked on UTRAN and E-UTRAN protocol monitoring solutions, pioneering the development of new and innovative approaches to data analysis. Eng Wei was a lead engineer for LTE network protocol test at Agilent before joining JDSU in 2010. Eng Wei received a Bachelor of Engineering from the University of Queensland, Australia, in 1999.
Gim-Seng Lau
Gim-Seng Lau is an R&D engineer for the Agilent wireless system development. He has worked in the field of RF and wireless engineering for the past 10 years. Currently, he is developing RF test conformance solutions. He also represents Agilent at 3GPP RAN5 and significantly contributes to the development of the standard specifications for LTE, WCDMA, and TD-SCDMA
Michael Lawton
Michael Lawton is a product planning engineer within the Mobile Broadband Operation of Agilent Technologies’ Microwave Communications Division. He has been with Agilent for 20 years, spending the majority of his career in product planning working on a variety of different wireless technologies. Michael holds both a BEng and a PhD in Electrical Engineering from the University of Bristol, UK. He has been awarded 4 patents in the areas of wireless networking and fiber optic communications. He has also represented Agilent and served as chair for external groups developing both industry standards and multi-sourcing agreements.
Andrea Leonardi
Andrea Leonardi is an R&D engineer at Agilent Technologies. He has a BS and MS in Computer Science from Midwestern State University, USA. Andrea has worked at Hewlett-Packard/Agilent Technologies since February 1998 in a variety of roles within R&D. He has developed protocol stacks for cdma2000, W-CDMA, HSDPA, HSUPA and LTE one-box-testers. Currently his primary responsibility is developing LTE solutions for cellular R&D customers and he represents Agilent at 3GPP RAN WG5
Dr. Michael Leung
Dr. Michael Leung is a market development manager for Agilent’s Asia Electronic Measurement Group. Michael plays a significant role in developing PXI and AXIe modular technology applications and wireless protocol research and testing for 3G (W-CDMA), 3.5G (HSPA), 4G (LTE/LTE-Advanced), and WiFi 802.11ac in Asia. During his 15 years at Agilent, Michael has received five Agilent technical invention awards, contributed more than 25 Agilent technical conference papers, and authored 10 research papers for various international journals and conferences. He is an editor of ICACT Transactions on the Advanced Communications Technology. He received a Master of Science and Doctor of Engineering from Hong Kong Polytechnic University in 1998 and 2005 respectively. Michael is a chartered engineer, a member of IET, and a senior member of IEEE.
Bill McKinley
Bill McKinley has held a number of positions in marketing, R&D, and manufacturing for Hewlett-Packard/Agilent Technologies spanning more than 25 years. He has worked predominantly in RF and microwave technology during this time, initially working with spectrum analyzers and signal generators before moving to mobile communication technologies. His current role is product planner focusing on the requirements of network operators. Bill holds a BSc in Electrical & Electronic Engineering from the University of Abertay in Dundee.
Masatoshi Obara
Masatoshi Obara obtained his BSc in Acoustics Design Engineering from Kyushu Institute of Design (a part of Kyushu University today), Japan, in 1979. He then joined Matsushita Intertechno in Tokyo, which represented test equipment companies such as B&K and DISA in Denmark and Leuven Measurements Systems in Belgium. Starting as a sales engineer, he later became a system engineer to design and develop automated acoustic and vibration test systems. Obara moved to Hewlett-Packard/Agilent Technologies in 1985. During the past 27 years he has developed many RF and microwave test systems for RF and microwave component test, radar and antenna test, satellite receiver test, and analog and digital cellular mobile and base station test. His roles have included system engineer, project manager, and engineering manager.
Mary Jane Pahls
Mary Jane Pahls is the owner of Eikonal Communications, a firm serving the engineering community. She has worked as a writer and editor in the test and measurement and telecommunication industries for more than 20 years, including eight years at Hewlett-Packard Company in Santa Rosa, California. Mary Jane’s recent projects, in addition to those for Agilent Technologies, include work for engineering standards groups and for companies in the semiconductor industry. She holds BA and MA degrees from Kent State University.
Venkata Ratnakar Rayavarapu
Venkata Ratnakar Rayavarapu contributed to the 1st edition as an employee of Anite Telecoms Ltd. and member of the Anite Layer 3 protocol development team for LTE. He holds a Masters in Telecommunication Systems from IIT, Kharagpur, India. Over the past eight years Venkata has worked on various mobile technologies including GSM, GPRS, W-CDMA, HSDPA, and HSUPA. He was previously with Hellosoft and Samsung.
Ian Reading
Ian Reading is a strategic program manager with Agilent Technologies Mobile Broadband Organization. Graduating with a BEng in Electronic Engineering from the University of Sheffield, Ian joined Agilent in the UK as a manufacturing engineer in 1984. His subsequent career includes RF design, ETSI GSM committee attendance, and R&D and marketing management for products serving markets that include aerospace, 2G/3G/4G, and WLAN/WPAN/WiMAX.
Moray Rumney
Moray Rumney joined Hewlett-Packard/Agilent Technologies in 1984, after completing a BSc in Electronics from Edinburgh’s Heriot-Watt University. Since then, Moray has enjoyed a varied career path, spanning manufacturing engineering, product development, applications engineering, and most recently technical marketing. His main focus has been the development and system design of base station emulators used in the development and testing of cellular phones. Moray joined ETSI in 1991 and 3GPP in 1999 where he was a significant contributor to the development of type approval tests for GSM and UMTS. He currently represents Agilent at 3GPP RAN WG4, where the air interface for HSPA+ and LTE-Advanced is being developed. Moray’s current focus is in MIMO “over-the-air” test methods. Moray has published many technical articles in the field of cellular communications and is a regular speaker and chairman at industry conferences. He is a member of IET and a chartered engineer.
Darshpreet Sabharwal
Darshpreet Sabharwal contributed to the 1st edition as an employee of Anite Telecoms Ltd. and a senior software engineer responsible for the development of the medium access control layer for LTE. He has developed protocol stacks for GPRS, EGPRS, and LTE and has worked with various generations of ETSI and 3GPP technologies including 2G, 2.5G, 3G, and LTE. Previously he was a technical leader with Aricent, India. He received his BE in Computer Science with distinction from Guru Nanak Dev Engineering College, India, and holds a postgraduate diploma in Business Administration from Symbiosis, India.
Roland Scherzinger
Roland Scherzinger is a technical marketing engineer for Electronic Test Division Roland joined Hewlett-Packard/Agilent Technologies in 1980 as a test engineer. After holding various positions as a process and manufacturing engineer, he joined the technical marketing team in 1995. Roland’s main focus was on test applications for computer buses such as PCI Express®, PCI, PCI-X, and InfiniBand. His responsibilities included application consulting for bring-up and debug, validation, performance, and compliance testing. He has been actively involved in and contributed to a number of PCI-SIG® related activities such as plugfests and developer’s conferences. Since 2009, Roland has been the MIPI™ application expert for Agilent in Boeblingen, Germany, and is leading ETD’s Digital Test Standards program for the MIPI standards. In this position he is actively participating with MIPI workgroups, plugfests, seminars, and workshops.
Sarabjit Singh
Sarabjit Singh contributed to the 1st edition as a technical architect at Anite Telecoms Ltd., UK, where his main responsibility involved shaping Anite’s LTE solutions for cellular R&D customers. Previously, Sarabjit worked with Tata Consultancy Services Ltd as a technical consultant and was a subject matter expert on various mobile technologies for both 3GPP and 3GPP2. He is involved in LTE and HSPA+, and he previously worked on UMTS (Release 99, HSDPA, HSUPA) and CDMA (IS 95 B, cdma2000, 1xEV-DO). He received a BE in Computer Science with distinction from Guru Nanak Dev Engineering College, India, in 1996.
Mark Stambaugh
Mark Stambaugh has a BS in Electrical Engineering from the University of Cincinnati, an MEE from Rice University, and an MS in Computer Science from National Technological University. He joined Hewlett-Packard/Agilent Technologies in 1987 and began his career developing signal generators. Throughout most of his 21 years with Agilent, Mark was part of Agilent’s R&D team developing base station emulator products and implementing all the major digital cellular protocols that these instruments have supported since GSM. Concentrating on the physical layer, his roles spanned implementation, system engineering, and technical leadership. Mark has nine patents.
Dr. K. F. Tsang
Dr. K. F. Tsang obtained a PhD from the University of Wales, College of Cardiff, UK. Dr. Tsang is now the chairman and managing director of Citycom Technology Ltd. as well as an associate professor in the Department of Electronic Engineering, City University of Hong Kong. Dr. Tsang has published more than 80 technical papers and is a reviewer for the IEEE Transaction on Circuits and Systems Part I, the Journal of Solid-State Circuits, and the IEEE Transaction on Vehicular Technology. His achievements include receiving the City University of Hong Kong’s Applied Research Excellence Award and the Certificate of Merit in both the first Hong Kong Science & Product Innovation Competition in 1998 and the World Chinese Invention Exposition’98. In addition, he has won the EDN Asia Innovator Award, the Ericsson Super-Wireless Application Award, and the Freescale Semiconductor Ltd. Best Award.
Chris Van Woerkom
Chris Van Woerkom obtained his BSEE from the University of California at Davis in 1977 and his MBA from the University of Colorado in 1996. He worked at Hewlett-Packard/Agilent Technologies for 33 years in a wide variety of positions in marketing and technical marketing.
Jinbiao Xu
Jinbiao Xu received the Bachelor’s degree in Mathematics and the Master and Ph.D. degrees in Information Engineering from Xidian University at Xi’an, China, in 1991, 1994, and 1997. From 1997 to 1998, he was a post-doctoral researcher on low speech codecs at the Institute of Acoustics, Chinese Academy of Science. Since joining Agilent EEsof EDA in 1999, he has been responsible for the OFDM series wireless library development (including products for DVB-T, ISDB-T, IEEE802.11a, WiMedia, mobile WiMAX, and 3GPP LTE). His current responsibility is to implement digital predistortion, MIMO channel model, and custom OFDM. Jinbiao’s research interests includes MIMO, OFDM, pre-distortion, and satellite communication.
Hiroshi Yanagawa
Hiroshi Yanagawa obtained his BSc in Communication Engineering from Shibaura Institute of Technology, Japan, in 1985. He then joined Hewlett-Packard/Agilent Technologies and has worked in various engineering positions over the last 27 years. Hiroshi worked as a marketing engineer for impedance measuring instruments for five years and then moved to custom solution engineering. During this time he developed analog and digital cellular mobile and base station test systems as a system engineer.
Mitsuru Yokoyama
Mitsuru Yokoyama is a lead technologist for wireless applications at Agilent’s Microwave and Communications Division in Kobe, Japan. He joined Hewlett-Packard/Agilent Technologies in 1982 after graduating with a BE and ME in Electrical Engineering from Kyoto University. Mitsuru worked initially on software design and development for Agilent’s semiconductor test systems, moving to project management of PDC/PHS test products in 1992. Mitsuru represented Agilent at 3GPP committee T1 from its formation in 1999, and he was the first chair of T1’s RF sub-group where the UE RF conformance tests were developed. Mitsuru is now engaged in application design and specification development for HSPA, EDGE Evolution, LTE, and other wireless applications.
Ryo Yonezawa
Ryo Yonezawa is currently an R&D engineer at Agilent’s Microwave and Communications Division in Kobe, Japan. He has a BS in Electrical Engineering from Hosei University and joined Hewlett-Packard/Agilent Technologies in 1997. He started as a system development engineer and since then has developed RF verification and conformance test systems that support GSM, GPRS, EGPRS, W-CDMA, HSDPA, cdma2000, and EVDO. He currently develops LTE signal generation software.
Ben Zarlingo
Ben Zarlingo is a product manager for communications test with Agilent’s Microwave and Communications Division. He received a BS in Electrical Engineering from Colorado State University in 1980 and has worked for Hewlett-Packard/Agilent Technologies in the areas of spectrum, network, and vector signal analysis with a primary focus on techniques for the design and troubleshooting of emerging communications technologies.
The challenge for any book tackling a subject as broad and deep as a completely new cellular radio standard is one of focus. The process of just creating the Long Term Evolution (LTE) specifications alone has taken several years and involved tens of thousands of temporary documents, thousands of hours of meetings, and hundreds of engineers. The result is several thousand pages of specifications. Now the hard work is underway, turning those specifications into real products that deliver real services to real people willing to pay real money. A single book of this length must therefore choose its subject wisely if it is to do more than just scratch the surface of such a complex problem.
The focus that Agilent has chosen for this book is a practical one: to explain design and measurement tools and techniques that engineering teams can use to accelerate turning the LTE specifications into a working system. The first half of the book provides an overview of the specifications starting in Chapter 2 with RF aspects and moving through the physical layer and upper layer signaling to the System Architecture Evolution (SAE) in Chapter 5. Due to limited space, the material in Chapters 2 through 5 should be viewed as an introduction to the technology rather than a deep exposition. For many, this level of detail will be sufficient but anyone tasked with designing or testing parts of the system will always need to refer directly to the specifications. The emphasis in the opening chapters is often on visual rather than mathematical explanations of the concepts. The latter can always be found in the specifications and should be considered sufficient information to build the system. However, the former approach of providing an alternative, more accessible explanation is often helpful prior to gaining a more detailed understanding directly from the specifications.
Having set the context for LTE in the opening chapters, the bulk of the remainder of the book provides a more detailed study of the extensive range of design and measurement techniques and tools that are available to help bring LTE from theory to deployment.
Before describing the LTE system it is useful to explain some of the terminology surrounding LTE since the history and naming of the technology is not intuitive. Some guidance can be found in the Vocabulary of 3GPP Specifications 21.905 [1], although this document is not comprehensive. The term LTE is actually a project name of the Third Generation Partnership Project (3GPP). The goal of the project, which started in November 2004, was to determine the long-term evolution of 3GPP’s universal mobile telephone system (UMTS). UMTS was also a 3GPP project that studied several candidate technologies before choosing wideband code division multiple access (W-CDMA) for the radio access network (RAN). The terms UMTS and W-CDMA are now interchangeable, although that was not the case before the technology was selected.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
