Materials Science Reading Sampler -  - E-Book

Materials Science Reading Sampler E-Book

0,0
0,70 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

The 2013 Materials Science eBook Sampler includes select material from seven Materials Science titles. Titles are from a number of Wiley imprints including Wiley, Wiley-VCH, Wiley-American Ceramic Society, Wiley-Scrivener and Wiley-The Minerals, Metals and Materials Society. The material that is included for each selection is the book's full Table of Contents as well as a sample chapter. If you would like to read more from these books, you can purchase the full book or e-book at your favorite online retailer.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 402

Veröffentlichungsjahr: 2013

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Introduction

Advanced Silicon Materials for Photovoltaic Applications

Title Page

Copyright

Preface

List of Contributors

Chapter 1: Silicon Science and Technology as the Background of the Current and Future Knowledge Society

1.1 Introduction

1.2 Silicon Birth from a Thermonuclear Nucleosynthetic Process

1.3 Silicon Key Properties

1.4 Advanced Silicon Applications

References

Chapter 2: Processes

2.1 Introduction

2.2 Gas-Phase Processes

2.3 Production of MG and UMG Silicon and Further Refining Up to Solar Grade by Chemical and Physical Processes

2.4 Fluoride Processes

2.5 Silicon Production/Refining with High-Temperature Plasmochemical Processes

2.6 Electrochemical Processes: Production of Silicon Without Carbon as Reductant

2.7 Conclusions

Acknowledgements

References

Chapter 3: Role of Impurities in Solar Silicon

3.1 Introduction

3.2 Sources and Refinements of Impurities

3.3 Segregation of Impurities During Silicon Growth

3.4 Role of Metallic Impurities

3.5 Role of Dopants

3.6 Role of Light Elements

3.7 Arriving at Solar-Grade Silicon Feedstock Definitions

References

Chapter 4: Gettering Processes and the Role of Extended Defects

4.1 Introduction

4.2 Properties of Transition-Metal Impurities in Silicon

4.3 Gettering Mechanisms and their Modeling

4.4 Bulk Processes Affecting Gettering Efficiency and Kinetics

4.5 Gettering Strategies and Defect Engineering

4.6 Conclusions

Acknowledgements

References

Chapter 5: Advanced Characterization Techniques

5.1 Introduction

5.2 Surface Photovoltage Spectroscopy

5.3 Photocurrent Spectroscopy

5.4 Optical (Light) Beam Induced Current (OBIC or LBIC)

5.5 Scanning Probe Microscopy for the Nanoscale Electrical Characterization of Semiconductors for PV Applications

5.6 Concluding Remarks

References

Chapter 6: Advanced Analytical Techniques for Solar-Grade Feedstock

6.1 Introduction

6.2 Review of Analytical Techniques

6.3 GDMS Analysis of PV Si

6.4 SIMS Analysis of PV Si

6.5 Applications of SIMS and GDMS for PV Si Feedstock Studies

References

Chapter 7: Thin-Film Deposition Processes

7.1 Introduction

7.2 Deposition Techniques of Thin-Film Silicon

7.3 In Situ Diagnosis of Growth Conditions

7.4 Challenges of Deposition at High Growth Rates and Low Substrate Temperatures

7.5 Upscaling to Large-Area and Industrial Processing: Critical Analysis of Various Fabrication Processes

Acknowledgements

References

Chapter 8: Modeling of Thin-Film Deposition Processes

8.1 Introduction

8.2 Modeling the Plasma Discharge

8.3 Modeling of the Gas Phase and Surface Kinetics

8.4 Modeling of the Thin-Film Morphological Evolution

8.5 Status of the Field and Perspectives

References

Chapter 9: Thin-Film Silicon Solar Cells

9.1 Introduction

9.2 Second-Generation Solar Cells: Advantages Compared to the First Generation

9.3 Drift-Type Thin-Film Silicon Solar Cells: Substrates and Configuration

9.4 Material Considerations for Thin-Film Silicon Solar Cells

9.5 Present Status of Drift-Type Thin-Film Silicon Solar Cells

9.6 Technological Issues

9.7 Third-Generation Thin-Film Silicon Cell

9.8 Solar Cells on Plastics

9.9 Hybrid Cells

9.10 Industrial Scenario of Thin-Film Silicon-based Solar Cells

9.11 Challenges for Thin-Film Silicon Solar-Module Fabrication

Acknowledgements

References

Chapter 10: Innovative Quantum Effects in Silicon for Photovoltaic Applications

10.1 Basic Principles of 3rd-Generation Solar Cells

10.2 The Advantages of Using Silicon Nanocrystals

10.3 Applications of Si-NCs in the 3rd-Generation Solar Cells

10.4 Challenges and Solutions

10.5 Conclusions

Acknowledgements

References

Index

Integrated Computational Materials Engineering (ICME) for Metals

Title page

Copyright page

Foreword

Preface

Acknowledgments

Chapter 1 An Introduction to Integrated Computational Materials Engineering (ICME)

1.1 Background

1.2 The Application of Multiscale Materials Modeling Via ICME

1.3 History of Multiscale Modeling

1.4 ICME for Design

1.5 ICME for Manufacturing

1.6 Summary

Chapter 2 Macroscale Continuum Internal State Variable (ISV) Plasticity–Damage Theory and Multistage Fatigue (MSF)

2.1 Introduction

2.2 Stress

2.3 Kinematics of Deformation and Strain

2.4 Continuum Theory Constitutive Equations

2.5 Multistage Fatigue (MSF) Modeling

2.6 Bridging Strategies for the Macroscale and the Mesoscale

2.7 Experimental Exploration, Calibration, and Validation at the Macroscale

2.8 Summary

Chapter 3 Mesoscale Analysis: Continuum Theory Methods With Discrete Features/Methods

3.1 Kinematics of Crystal Plasticity

3.2 Kinetics of Crystal Plasticity

3.3 Crystal Orientations and Elasticity

3.4 Upscaling: Bridging the Crystal Level to the Polycrystalline Continuum Level

3.5 Downscaling From Crystal Plasticity to Dislocation Dynamics

3.6 Experimental Exploration, Calibration, and Validation at the Mesoscale

3.7 Summary

Chapter 4 Discrete Dislocation Dynamics Simulations

4.1 Introduction

4.2 Metal Plasticity Modeling

4.3 Dislocation Mechanics Basics

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!